22 research outputs found

    Dual polarization ring resonator for conformational analysis of molecular-sized layers

    Get PDF

    Determination of thickness and density of a wet multilayer polymer system with sub-nanometer resolution by means of a dual polarization silicon-on-insulator microring

    Get PDF
    Determination of both thickness and refractive index of a thin biomolecular or polymer layer in wet conditions is a task not easily performed. Available tools such as XPS, AFM, ellipsometry and integrated photonic sensors often have difficulties with the native wet condition of said agents-under-test, perform poorly in the sub-5 nm regime or do not determine both characteristics in an absolute simultaneous way. The thickness of a multilayer system is often determined by averaging over a large amount of layers, obscuring details of the individual layers. Even more, the interesting behavior of the first bound layers can be covered in noise or assumptions might be made on either thickness or refractive index in order to determine the other. To demonstrate a solution to these problems, a silicon-on-insulator (SOI) microring is used to study the adsorption of a bilayer polymer system on the silicon surface of the ring. To achieve this, the microring is simultaneously excited with TE and TM polarized light and by tracking the shifts of both resonant wavelengths, the refractive index and the thickness of the adsorbed layer can be determined with a resolution on thickness smaller than 0.1 nm and a resolution on refractive index smaller than 0.01 RIU. An adhesive polyethyleneimine (PEI) layer is adsorbed to the surface, followed by the adsorption of poly(sodium-4-styrene sulfonate) (PSS) and poly(allylamine) hydrochloride (PAH). This high-resolution performance in wet conditions with the added benefits of the SOI microring platform such as low cost and multiplexibility make for a powerful tool to analyze thin layer systems, which is promising to research binding conformation of proteins as well

    Silicon photonics biosensing: different packaging platforms and applications

    Get PDF
    We present two different platforms integrating silicon photonic biosensors. One is based on integration with reaction tubes to be compatible with traditional lab approaches. The other uses through-chip fluidics in order to achieve better mixing of the analyte

    Silicon photonics for on-chip spectrophotometry

    Get PDF
    Silicon and Silicon Nitride photonics arc on their way to open the route towards integrated on-chip spectropholometers, Cost, miniaturization, miniaturization, hut also performance advantages ace at the origin of their potential We will discuss several integrated on-chip spectropholometers that are on the eve of commercial take up

    Ring resonator based SOI biosensors

    Get PDF
    In this paper, two recent advances in silicon ring resonator biosensors are presented. First, we address the problem that due to the high index contrast, small deviations from perfect symmetry lift the degeneracy of the normal resonator mode. This severely deteriorates the quality of the output signal. To address this, we discuss an integrated interferometric approach to give access to the unsplit, high-quality normal modes of the microring resonator. Second, we demonstrate how digital microfluidics can be used for effective fluid delivery to nanophotonic microring resonator sensors fully constructed in SOI

    Silicon photonics for on-chip spectrophotometry

    Get PDF
    Silicon and Silicon Nitride photonics arc on their way to open the route towards integrated on-chip spectropholometers, Cost, miniaturization, miniaturization, hut also performance advantages ace at the origin of their potential We will discuss several integrated on-chip spectropholometers that are on the eve of commercial take up
    corecore