1 research outputs found
Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution
Nonlocal correlations, a longstanding foundational topic in quantum
information, have recently found application as a resource for cryptographic
tasks where not all devices are trusted, for example in settings with a highly
secure central hub, such as a bank or government department, and less secure
satellite stations which are inherently more vulnerable to hardware "hacking"
attacks. The asymmetric phenomena of Einstein-Podolsky-Rosen steering plays a
key role in one-sided device-independent quantum key distribution (1sDI-QKD)
protocols. In the context of continuous-variable (CV) QKD schemes utilizing
Gaussian states and measurements, we identify all protocols that can be 1sDI
and their maximum loss tolerance. Surprisingly, this includes a protocol that
uses only coherent states. We also establish a direct link between the relevant
EPR steering inequality and the secret key rate, further strengthening the
relationship between these asymmetric notions of nonlocality and device
independence. We experimentally implement both entanglement-based and
coherent-state protocols, and measure the correlations necessary for 1sDI key
distribution up to an applied loss equivalent to 7.5 km and 3.5 km of optical
fiber transmission respectively. We also engage in detailed modelling to
understand the limits of our current experiment and the potential for further
improvements. The new protocols we uncover apply the cheap and efficient
hardware of CVQKD systems in a significantly more secure setting.Comment: Addition of experimental results and (several) new author