5 research outputs found
TeV-Scale Black Hole Lifetimes in Extra-Dimensional Lovelock Gravity
We examine the mass loss rates and lifetimes of TeV-scale extra dimensional
black holes (BH) in ADD-like models with Lovelock higher-curvature terms
present in the action. In particular we focus on the predicted differences
between the canonical and microcanonical ensemble statistical mechanics
descriptions of the Hawking radiation that results in the decay of these BH. In
even numbers of extra dimensions the employment of the microcanonical approach
is shown to generally lead to a significant increase in the BH lifetime as in
case of the Einstein-Hilbert action. For odd numbers of extra dimensions,
stable BH remnants occur when employing either description provided the highest
order allowed Lovelock invariant is present. However, in this case, the time
dependence of the mass loss rates obtained employing the two approaches will be
different. These effects are in principle measurable at future colliders.Comment: 27 pages, 9 figs; Refs. and discussion adde
Renormalization group improved black hole space-time in large extra dimensions
By taking into account a running of the gravitational coupling constant with
an ultra violet fixed point, an improvement of classical black hole space-times
in extra dimensions is studied. It is found that the thermodynamic properties
in this framework allow for an effective description of the black hole
evaporation process. Phenomenological consequences of this approach are
discussed and the LHC discovery potential is estimated.Comment: 13 pages, 6 figure
Mini Black Holes in the first year of the LHC
The experimental signatures of TeV-mass black hole (BH) formation in heavy
ion collisions at the LHC is examined. We find that the black hole production
results in a complete disappearance of all very high ({} GeV)
back-to-back correlated di-jets of total mass {}TeV. We show
that the subsequent Hawking-decay produces multiple hard mono-jets and discuss
their detection. We study the possibility of cold black hole remnant (BHR)
formation of mass and the experimental distinguishability of
scenarios with BHRs and those with complete black hole decay. Due to the rather
moderate luminosity in the first year of LHC running the least chance for the
observation of BHs or BHRs at this early stage will be by ionizing tracks in
the ALICE TPC. Finally we point out that stable BHRs would be interesting
candidates for energy production by conversion of mass to Hawking radiation.Comment: 10 pages, 2 figure
TeV Mini Black Hole Decay at Future Colliders
It is generally believed that mini black holes decay by emitting elementary
particles with a black body energy spectrum. The original calculation lead to
the conclusion that about the 90% of the black hole mass is radiated away in
the form of photons, neutrinos and light leptons, mainly electrons and muons.
With the advent of String Theory, such a scenario must be updated by including
new effects coming from the stringy nature of particles and interactions.By
taking for granted that black holes can be produced in hadronic collisions,
then their decay must take into account that: (i) we live in a D3-Brane
embedded into an higher dimensional bulk spacetime; (ii) fundamental
interactions, including gravity, are unified at TeV energy scale. Thus, the
formal description of the Hawking radiation mechanism has to be extended to the
case of more than four spacetime dimensions and include the presence of
D-branes. Furthermore, unification of fundamental interactions at an energy
scale many order of magnitude lower than the Planck energy implies that any
kind of fundamental particle, not only leptons, is expected to be emitted. A
detailed understanding of the new scenario is instrumental for optimal tuning
of detectors at future colliders, where, hopefully, this exciting new physics
will be tested. In this article we review higher dimensional black hole decay,
considering not only the emission of particles according to Hawking mechanism,
but also their near horizon QED/QCD interactions. The ultimate motivation is to
build up a phenomenologically reliable scenario, allowing a clear experimental
signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and
Quantum Gra