12 research outputs found

    Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes.

    No full text
    Mitochondrial transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects, mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species. Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to their semiautonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. We outline the different mitochondrial isolation and transfer techniques. Finally, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia

    Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges.

    No full text
    Mitochondria, known as the powerhouse of the cell, are at the center of healthy physiology and provide cells with energy in the form of ATP. These unique organelles are also implicated in many pathological conditions affecting a variety of organs in various systems. Recently, mitochondrial transplantation, inspired by mitochondria's endosymbiotic origin, has been attempted as a potential biotherapy in mitigating a variety of pathological conditions. Mitochondrial transplantation consists of the process of isolation, transfer, and uptake of exogenous, intact mitochondria into damaged cells. Here, we discuss mitochondrial transplantation in the context of clinical medicine practiced in neurology, cardiology, pulmonary medicine, and oncology, among others. We outline the role of mitochondria in various pathologies and discuss the state-of-the-art research that potentially form the basis of new therapeutics for the treatment of a variety of diseases due to mitochondrial dysfunction. Lastly, we explore some of the challenges associated with mitochondrial transplantation that must be addressed before mitochondrial transplantation becomes a viable therapeutic option in clinical settings

    3D numerical analysis of loading geometry on soil behavior reinforced with geocell element

    Get PDF
    Considering the weakness of the soil profile against tensile forces, researchers have been continuously searching to increase the bearing capacity and shear strength and improve its properties. In some projects, the soil reinforcement method has been known as a proper method for soil improvement because of its low cost, easy implementation, and great impact on soil properties. Reinforced soil is a structure composed of two different types of materials, which minimize their weaknesses together: the soil tolerates compressive stresses, and the reinforcement elements tolerate tensile stresses. In this research, the behavior of circle foundation located on a sand bed reinforced with geocell (GC) elements (which was investigated experimentally) was assessed analytically by using the Abaqus finite element software in three-dimensional (3D) mode as well. After assuring that the results of analytical studies were appropriately correlated with the results of laboratory studies, the behavior of the soil reinforced with GC elements under other square foundations was examined by using analytical studies. The results of this study showed a 65 % increase in bearing capacity and 15 % reduction in the settlement of circle foundation if using GC elements to reinforce the soil profile. The aforementioned has been obtained from comparing the results obtained from analytical and laboratory studies, showing proper matching and alignment between them by changing the geometry of the foundation from circle to square in 3D analytic studies. There was a greater effect on the bearing capacity of square foundations when increasing the GC elements (up to 12 %) than on the bearing capacity of circle foundations. To prove the proposed innovation in this research, some of its outputs were applied for improving the soil under an old one-story building with asymmetric settlement instead of reinforced concrete piles. The settlement was stopped within six months after the completion of the soil improvement operation

    Analysis and comparison of SARS-CoV-2 variant antibodies and neutralizing activity for 6 months after a booster mRNA vaccine in a healthcare worker population

    Get PDF
    IntroductionIn the context of recurrent surges of SARS-CoV-2 infections, a detailed characterization of antibody persistence over a 6-month period following vaccine booster dose is necessary to crafting effective public health policies on repeat vaccination.MethodsTo characterize the SARS-CoV-2 antibody profile of a healthcare worker population over a 6-month period following mRNA vaccination and booster dose. 323 healthcare workers at an academic medical center in Orange County, California who had completed primary vaccination and booster dose against SARS-CoV-2 were recruited for the study. A total of 690 blood specimens over a 6-month period were collected via finger-stick blood and analyzed for the presence of antibodies against 9 SARS-CoV-2 antigens using a coronavirus antigen microarray. ResultsThe primary outcome of this study was the average SARS-CoV-2 antibody level as measured using a novel coronavirus antigen microarray. Additional outcomes measured include levels of antibodies specific to SARS-CoV-2 variants including Delta, Omicron BA.1, and BA.2. We also measured SARS-CoV-2 neutralization capacity for a subset of the population to confirm correlation with antibody levels. Although antibodies against SARS-CoV-2 wane throughout the 6-month period following a booster dose, antibody levels remain higher than pre-boost levels. However, a booster dose of vaccine based on the original Wuhan strain generates approximately 3-fold lower antibody reactivity against Omicron variants BA.1 and BA.2 as compared to the vaccine strain. Despite waning antibody levels, neutralization activity against the vaccine strain is maintained throughout the 6-month period. DiscussionIn the context of recurrent surges of SARS-CoV-2 infections, our data indicate that breakthrough infections are likely driven by novel variants with different antibody specificity and not by time since last dose of vaccination, indicating that development of vaccinations specific to these novel variants is necessary to prevent future surges of SARS-CoV-2 infections

    Integrated Proteomics-Based Physical and Functional Mapping of AXL Kinase Signaling Pathways and Inhibitors Define Its Role in Cell MigrationSystems Analysis of AXL Signaling in Lung Cancers

    No full text
    To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy

    Persistence of SARS-CoV-2 Antibodies in Vaccinated Health Care Workers Analyzed by Coronavirus Antigen Microarray.

    No full text
    Recent studies provide conflicting evidence on the persistence of SARS-CoV-2 immunity induced by mRNA vaccines. Here, we aim to quantify the persistence of humoral immunity following vaccination using a coronavirus antigen microarray that includes 10 SARS-CoV-2 antigens. In a prospective longitudinal cohort of 240 healthcare workers, composite SARS-CoV-2 IgG antibody levels did not wane significantly over a 6-month study period. In the subset of the study population previously exposed to SARS-CoV-2 based on seropositivity for nucleocapsid antibodies, higher composite anti-spike IgG levels were measured before the vaccine but no significant difference from unexposed individuals was observed at 6 months. Age, vaccine type, or worker role did not significantly impact composite IgG levels, although non-significant trends towards lower antibody levels in older participants and higher antibody levels with Moderna vaccine were observed at 6 months. A small subset of our cohort were classified as having waning antibody titers at 6 months, and these individuals were less likely to work in patient care roles and more likely to have prior exposure to SARS-CoV-2
    corecore