11 research outputs found

    Relationship Between Sterol Regulatory Element- Binding Protein-2 Gene Expression Level and Lipid Profile

    Get PDF
    Background and purpose: Atherosclerosis is a form of arteriosclerosis that is one of the main causes of death in the world. In coronary artery disease, the vessels are stenosed due to lipid aggregation and inflammation. Epidemiologic studies have shown that in addition to demographic factors such as age and sex, blood pressure, smoking, obesity diabetes and genetics are also associated with development of atherosclerosis process. The aim of this study was to examine the relationship between these factors and atherosclerosis. Materials and methods: One hundred twenty six Iranian subjects (68 males, 58 females) were recruited based on the study�s inclusion criteria. Total RNA was extracted from WBC and, the gene expression level was determined by RT-qPCR method. Results: Significant relationship was found between sex (P0.05). Conclusion: We found that among factors affecting atherosclerosis, sex and LDL-C could change the Sterol Regulatory Element-Binding Protein-2 gene expression. © 2016, Mazandaran University of Medical Sciences. All rights reserved

    SNP haplotyping technique for evaluation of MGP 5� UTR power in osteoblast cells

    Get PDF
    Matrix Gla protein (MGP) is involved in calcium trafficking and arterial calcification. The aim of study was to investigate the role of three polymorphisms within the MGP gene promoter region on reporter gene (luciferase) expression level. The fragments containing rs1800799 (C/T), rs1800802 (T/C), and rs1800801 (G/A) sites were constructed and transferred into human G292 osteoblast cells using pGL3-Basic plasmid. The reporter gene expression was calculated for the high and low frequency polymorphic haplotypes (CTG and TCA, respectively). Results showed that the reporter gene expression levels are not statistically different (p > 0.3). We concluded that the investigated polymorphic sites are not able to change the gene expression pattern in human G292 osteoblast cells. © 2016, The Author(s)

    Role of microbiota-derived short-chain fatty acids in cancer development and prevention

    Get PDF
    Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers. © 2021 The Author

    The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world�s driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40�100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one�s cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection�s fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB. © 2021, The Author(s)

    Correction to: The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID�19) (Archives of Virology, (2021), 166, 7, (1819-1840), 10.1007/s00705-021-05036-8)

    Get PDF
    Authors would like to correct the error in their publication. The original article has been corrected. 1. Reference 17 is incorrect. The correct one should be �The probiotic Bifidobacterium in the management of Coronavirus: A theoretical basis� https://doi.org/10.1177/2058738420961304. 2. The unnecessary symbol �??� found in text is deleted. © 2021, Springer-Verlag GmbH Austria, part of Springer Nature

    Vitronectin and Urokinase-Type Plasminogen Activator Gene Expression Levels Are Increased in Patients with Coronary Artery In-Stent Restenosis

    No full text
    Neointimal hyperplasia is known as a main factor contributing to in-stent restenosis (ISR). Monocytes may play a central role in vessel restenosis process after stent implantation. The aim of this study was to investigate the relationships between the urokinase-type plasminogen activator (PLAU) and vitronectin (Vtn) gene expression levels in peripheral blood mononuclear cell samples isolated from whole blood of 66 patients undergoing coronary artery angiography (22 controls, stenosis 70). The Vtn and PLAU gene expression levels were measured by real-time quantitative polymerase chain reaction technique. The age- and gender-independent increases in the expression levels of Vtn (17-fold; p < 0.001) and PLAU (27-fold; p < 0.0001) genes were found in the patients with ISR as compared with the control group. The results suggested that the Vtn and PLAU genes may be involved in the coronary artery ISR. © Copyright 2017 by Thieme Medical Publishers, Inc

    Prostaglandin E2 (PGE2) synthesis pathway is involved in coronary artery stenosis and restenosis

    No full text
    The inflammatory events related to prostaglandins may play an important role in the progression of vessel stenosis. The aim of this study was to investigate the monocyte PTGES and 15-PGDH gene expression levels and the serum 13,14-dihyro-15-keto-PGF2α value involved in PGE2 metabolism in patients with coronary artery stenosis and restenosis. Moreover, the effects of miR-520, miR-1297 and miR-34 were studied on the gene expression levels. A total of sixty subjects referred for coronary angiography including healthy controls (stenosis 70) were participated in the study. The gene expression levels and the serum 13,14-dihyro-15-keto- PGF2α value were measured by RT-qPCR and ELISA techniques, respectively. Moreover, the effects of miRNAs on the gene expression levels were investigated by the monocyte transfection of miR/PEI complexes. The PTGES and 15-PGDH gene expression levels and serum 13,14-dihyro-15-keto- PGF2α value increased significantly (P <0.05). Based on the miR-520 and miR-34 expression levels, the miR/PEI transfection studies were confirmed significantly the gene expression changes. The monocyte PGE2 synthesis pathway is actively considered in the SNR and ISR patients and might be related to miR-34 and miR-520 functions. © 202

    Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto's thyroiditis and hypothyroidism

    No full text
    The essential trace element selenium (Se) is required for thyroid hormone synthesis and metabolism. Selenoproteins contain selenocysteine and are responsible for biological functions of selenium. Glutathione peroxidase (GPx) is one of the major selenoproteins which protects the thyroid cells from oxidative damage. Selenoprotein P (SePP) is considered as the plasma selenium transporter to tissues. The aim of this study was to evaluate serum Se and SePP levels, and GPx activity in erythrocytes of children and adolescents with treated Hashimoto's thyroiditis, hypothyroidism, and normal subjects.Blood samples were collected from 32 patients with Hashimoto's thyroiditis, 20 with hypothyroidism, and 25 matched normal subjects. All the patients were under treatment with levothyroxine and at the time of analysis all of the thyroid function tests were normal. GPx enzyme activity was measured by spectrophotometry at 340 nm. Serum selenium levels were measured by high-resolution continuum source graphite furnace atomic absorption. SePP, TPOAb (anti-thyroid peroxidase antibody), and TgAb (anti-thyroglobulin antibody) were determined by ELISA kits. T4, T3, T3 uptake and TSH were also measured. Neither GPx activity nor SePP levels were significantly different in patients with Hashimoto's thyroiditis or hypothyroidism compared to normal subjects. Although GPx and SePP were both lower in patients with hypothyroidism compared to those with Hashimoto's thyroiditis and normal subjects but the difference was not significant. Serum Se levels also did not differ significantly in patients and normal subjects. We did not find any correlation between GPx or SePP with TPOAb or TgAb but SePP was significantly correlated with Se. Results show that in patients with Hashimoto's thyroiditis or hypothyroidism who have been under treatment with levothyroxine and have normal thyroid function tests, the GPx, SePP and Se levels are not significantly different. © 2015 Elsevier GmbH

    The pathogenic, therapeutic and diagnostic role of exosomal microrna in the autoimmune diseases

    No full text
    Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases. © 202

    The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection

    No full text
    The novel coronavirus disease 2019 (COVID-19) pandemic has imposed significant public health problems for the human populations worldwide after the 1918 influenza A virus (IVA) (H1N1) pandemic. Although numerous efforts have been made to unravel the mechanisms underlying the coronavirus, a notable gap remains in our perception of the COVID-19 pathogenesis. The innate and adaptive immune systems have a pivotal role in the fate of viral infections, such as COVID-19 pandemic. MicroRNAs (miRNAs) are known as short noncoding RNA molecules and appear as indispensable governors of almost any cellular means. Several lines of evidence demonstrate that miRNAs participate in essential mechanisms of cell biology, regulation of the immune system, and the onset and progression of numerous types of disorders. The immune responses to viral respiratory infections (VRIs), including influenza virus (IV), respiratory syncytial virus (RSV), and rhinovirus (RV), are correlated with the ectopic expression of miRNAs. Alterations of the miRNA expression in epithelial cells may contribute to the pathogenesis of chronic and acute airway infections. Hence, analyzing the role of these types of nucleotides in antiviral immune responses and the characterization of miRNA target genes might contribute to understanding the mechanisms of the interplay between the host and viruses, and in the future, potentially result in discovering therapeutic strategies for the prevention and treatment of acute COVID-19 infection. In this article, we present a general review of current studies concerning the function of miRNAs in different VRIs, particularly in coronavirus infection, and address all available therapeutic prospects to mitigate the burden of viral infections. © 202
    corecore