5 research outputs found

    Solving construction project selection problem by a new uncertain weighting and ranking based on compromise solution with linear assignment approach

    Get PDF
    Selecting a suitable construction project is a significant issue for contractors to decrease their costs. In real cases, the imprecise and uncertain information lead to decisions made based on vagueness.  Fuzzy sets theory could help decision makers (DMs) to address incomplete information. However, this article develops a new integrated multi-criteria group decision-making model based on compromise solution and linear assignment approaches with interval-valued intuitionistic fuzzy sets (IVIFSs). IVIFSs by presenting a membership and non-membership degree for each candidate based on appraisement criteria could decrease the vagueness of selection decisions. The proposed algorithm involves a new decision process under uncertain conditions to determine the importance of criteria and DMs, separately. In this regard, no subjective or additional information is needed for this process; only the input information required is an alternative assessment matric. In this approach, weights of criteria and DMs are specified based on novel indexes to increase the reliability of obtained results. In this respect, the criteria’ weights are computed regarding entropy concepts. The basis for calculating the weight of each DM is the distance between each DM and an average of the DMs’ community. Furthermore, the linear assignment model is extended to rank the candidates. A case study about the construction project selection problem (CPSP) is illustrated to indicate the application of proposed model

    Evaluating the sustainable mining contractor selection problems: An imprecise last aggregation preference selection index method

    No full text
    The increasing complexity surrounding decision-making situations has made it inevitable for practitioners to apply ideas from a group of experts or decision makers (DMs) instead of individuals. In a large proportion of recent studies, not enough attention has been paid to considering uncertainty in practical ways. In this paper, a hesitant fuzzy preference selection index (HFPSI) method is proposed based on a new soft computing approach with risk preferences of DMs to deal with imprecise multi-criteria decision-making problems. Meanwhile, qualitative assessing criteria are considered in the process of the proposed method to help the DMs by providing suitable expressions of membership degrees for an element under a set. Moreover, the best alternative is selected based on considering the concepts of preference relation and hesitant fuzzy sets, simultaneously. Therefore, DMs' weights are determined according to the proposed hesitant fuzzy compromise solution technique to prevent judgment errors. Moreover, the proposed method has been extended based on the last aggregation method by aggregating the DMs' opinions during the last stage to avoid data loss. In this respect, a real case study about the mining contractor selection problem is provided to represent the effectiveness and efficiency of the proposed HFPSI method in practice. Then, a comparative analysis is performed to show the feasibility of the presented approach. Finally, sensitivity analysis is carried out to show the effect of considering the DMs' weights and last aggregation approach in a dispersion of the alternatives’ ranking values

    Sustainable High-Tech Brick Production with Energy-Oriented Consumption: An Integrated Possibilistic Approach Based on Criteria Interdependencies

    No full text
    Brick making contributes significantly to the of supply materials for the building industry. The majority of brick production sectors, especially in developing countries, employ polluting and energy-inefficient technologies. Due to the increasing pressures on manufacturing firms to improve economic performance and growing environmental protection issues, sustainable and clean production is the main concern for brick makers. This paper considers the technological, economic, environmental, social, and energy-oriented criteria to select the optimal brick production technologies. Therefore, technology selection is viewed as a multi-criteria group decision-making (MCGDM) problem. This research proposes a novel hybrid fuzzy MCGDM (HFMCGDM) model to tackle the problem. In this respect, first of all, the modified triangular fuzzy pair-wise comparison (MTFPC) method is proposed to compute the local weights of criteria and sub-criteria. Then, a fuzzy DEMATEL (FDEMATEL) method is presented to calculate the interdependencies between and within the criteria. Moreover, the integration of MTFPC and FDEMATEL methods is applied to calculate the global criteria weights. Afterward, a novel method is proposed to determine the experts’ weight. Considering the last aggregation approach to diminish data loss, a new version of a fuzzy TOPSIS method is proposed to find the local and global priorities of the candidates. Then, a case study is given to demonstrate the applicability and superiority of the proposed methodology. To get a deeper view about considering kilns, energy and environmental performance of which has been investigated. Moreover, a comparative analysis is presented to illuminate the merits of the proposed methodology. Eventually, a sensitivity analysis is conducted to peruse the influence of criteria weights on ranking order

    Sustainable High-Tech Brick Production with Energy-Oriented Consumption: An Integrated Possibilistic Approach Based on Criteria Interdependencies

    No full text
    Brick making contributes significantly to the of supply materials for the building industry. The majority of brick production sectors, especially in developing countries, employ polluting and energy-inefficient technologies. Due to the increasing pressures on manufacturing firms to improve economic performance and growing environmental protection issues, sustainable and clean production is the main concern for brick makers. This paper considers the technological, economic, environmental, social, and energy-oriented criteria to select the optimal brick production technologies. Therefore, technology selection is viewed as a multi-criteria group decision-making (MCGDM) problem. This research proposes a novel hybrid fuzzy MCGDM (HFMCGDM) model to tackle the problem. In this respect, first of all, the modified triangular fuzzy pair-wise comparison (MTFPC) method is proposed to compute the local weights of criteria and sub-criteria. Then, a fuzzy DEMATEL (FDEMATEL) method is presented to calculate the interdependencies between and within the criteria. Moreover, the integration of MTFPC and FDEMATEL methods is applied to calculate the global criteria weights. Afterward, a novel method is proposed to determine the experts’ weight. Considering the last aggregation approach to diminish data loss, a new version of a fuzzy TOPSIS method is proposed to find the local and global priorities of the candidates. Then, a case study is given to demonstrate the applicability and superiority of the proposed methodology. To get a deeper view about considering kilns, energy and environmental performance of which has been investigated. Moreover, a comparative analysis is presented to illuminate the merits of the proposed methodology. Eventually, a sensitivity analysis is conducted to peruse the influence of criteria weights on ranking order
    corecore