11 research outputs found

    Reconfigurable silicon photonic integrated circuits

    No full text
    Integrating photonics with state-of-the-art nanoelectronics in Silicon (Si) is key to enabling new computing paradigms and sensing applications, as it leverages the well-established complementary metal-oxide-semiconductor (CMOS) foundries used to manufacture the electronics chips at a large-scale with low-cost. Towards this goal, great efforts have been made to integrate all the fundamental photonic building blocks on Si. However, due to a number of challenges, there has been no demonstration of a complete fully-integrated silicon photonic (SiP) chip. This dissertation addresses some of the challenges that hold back the deployment of complete fully-integrated Si chips. Due to Si’s temperature dependency, the performance of ring-based filters, switches, and modulators degrade when the surrounding temperature fluctuates. Second, fabrication imperfections lead to a discrepancy between the designed and measured ring-based filters’, switches’, and modulators’ spectral responses. Third, because of Si’s reciprocal lattice, Si cannot be used to realize optical isolators, which are required to integrate lasers on Si as they block back-reflections from flowing back to the laser and destabilizing its operation. This dissertation addresses the aforementioned challenges as follows. By slightly doping the Si waveguides, defect states are introduced which enable sensing and manipulating light in Si waveguides while absorbing minimal optical power. These doped waveguides are introduced into ring-based filters and switches to correct for fabrication errors and demonstrate the tuning of the largest yet most compact ring-based 16×16 optical switch matrix and 14-ring coupled-resonator optical waveguide (CROW) filter. Second, a new design of a microring modulator (MRM) is demonstrated that allows correcting the spectral features (wavelength, bandwidth (BW) and/or extinction ratio (ER)) of fabricated MRMs and maintain the MRM’s free-spectral range (FSR). Third, a new method for measuring propagation losses in optical waveguides is demonstrated. Finally, a stable quantum well (QW) distributed feedback (DFB) laser without an isolator is demonstrated for the first time. Instead of depositing Si-incompatible magneto-optic (MO) materials, a reflection-cancellation circuit (RCC) is proposed and used to demonstrate laser stability against varying levels of back-reflections in real-time. The same circuit was used to further reduce the linewidth of the DFB laser down to 3 kHz.Applied Science, Faculty ofElectrical and Computer Engineering, Department ofGraduat

    Finally, affordable silicon photonics

    No full text
    Applied Science, Faculty ofElectrical and Computer Engineering, Department ofUnreviewedGraduat

    Erratum: Luan, E.X.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon Photonic Biosensors Using Label-Free Detection. Sensors 2018, 18, 3519

    No full text
    The authors wish to make the following corrections in their published paper in Sensors [...]Applied Science, Faculty ofNon UBCElectrical and Computer Engineering, Department ofReviewedFacult

    Silicon Photonic Biosensors Using Label-Free Detection

    No full text
    Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level complementary metal-oxide semiconductor (CMOS) chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.Applied Science, Faculty ofNon UBCElectrical and Computer Engineering, Department ofReviewedFacult

    PEGylated Tween 80-functionalized chitosan-lipidic nano-vesicular hybrids for heightening nose-to-brain delivery and bioavailability of metoclopramide

    No full text
    AbstractA PEGylated Tween 80–functionalized chitosan–lipidic (PEG-T-Chito-Lip) nano-vesicular hybrid was developed for intranasal administration as an alternative delivery route to help improve the poor oral bioavailability of BCS class-III model/antiemetic (metoclopramide hydrochloride; MTC). The influence of varying levels of chitosan, cholesterol, PEG 600, and Tween 80 on the stability/release parameters of the formulated nanovesicles was optimized using Draper-Lin Design. Two optimized formulations (Opti-Max and Opti-Min) with both maximized and minimized MTC-release goals, were predicted, characterized, and proved their vesicular outline via light/electron microscopy, along with the mutual prompt/extended in-vitro release patterns. The dual-optimized MTC–loaded PEG-T-Chito-Lip nanovesicles were loaded in intranasal in-situ gel (ISG) and further underwent in-vivo pharmacokinetics/nose-to-brain delivery valuation on Sprague-Dawley rats. The absorption profiles in plasma (plasma-AUC0-∞) of the intranasal dual-optimized MTC–loaded nano-vesicular ISG formulation in pretreated rats were 2.95-fold and 1.64-fold more than rats pretreated with orally administered MTC and intranasally administered raw MTC-loaded ISG formulation, respectively. Interestingly, the brain-AUC0-∞ of the intranasal dual-optimized MTC–loaded ISG was 10 and 3 times more than brain-AUC0-∞ of the MTC-oral tablet and the intranasal raw MTC-loaded ISG, respectively. It was also revealed that the intranasal dual-optimized ISG significantly had the lowest liver-AUC0-∞ (862.19 ng.g−1.h−1) versus the MTC-oral tablet (5732.17 ng.g−1.h−1) and the intranasal raw MTC-loaded ISG (1799.69 ng.g−1.h−1). The brain/blood ratio profile for the intranasal dual-optimized ISG was significantly enhanced over all other MTC formulations (P < 0.05). Moreover, the 198.55% drug targeting efficiency, 75.26% nose-to-brain direct transport percentage, and 4.06 drug targeting index of the dual-optimized formulation were significantly higher than those of the raw MTC-loaded ISG formulation. The performance of the dual-optimized PEG-T-Chito-Lip nano-vesicular hybrids for intranasal administration evidenced MTC-improved bioavailability, circumvented hepatic metabolism, and enhanced brain targetability, with increased potentiality in heightening the convenience and compliance for patients
    corecore