7 research outputs found

    In Vivo Positional Analysis of Implantable Collamer Lens Using Ultrasound Biomicroscopy

    Get PDF
    Purpose. To evaluate the anterior segment, the anatomical position of the implantable collamer lenses (ICL), and its relationship to adjacent ocular structures using Ultrasound Biomicroscopy (UBM). Methods. In a prospective study, 142 myopic eyes of 93 patients implanted with Visian ICL were subjected to UBM examination between March 2010 and January 2015. The relative position of ICL to the adjacent structure and the overall iris configuration were evaluated. The machine calibers were used to measure the minimum central distance between the ICL and anterior lens capsule (vault) and the vertical central distance between the corneal endothelium and the ICL (E-ICL). Results. The mean ICL vault was 376±105 μm. The mean E-ICL was 2826±331 μm. Contact between ICL and the posterior epithelium of the iris was present in all eyes. The overall iris configuration was flat in 89 eyes. Central anterior convexity was present in 41 eyes and mild peripheral iris bombe in 12 eyes. The haptics could be imaged in the ciliary sulcus in 112 eyes and at least one haptic resting on the lens periphery and zonules in 30 eyes. Conclusion. UBM can provide valuable anatomical information that allows detailed postoperative in vivo assessment of ICL

    Hybrid thermosensitive-mucoadhesive 'in situ' forming gels for enhanced corneal wound healing effect of L-carnosine

    Get PDF
    PURPOSE: Thermosensitive in situ gels have been around for decades but only a few have been translated into ophthalmic pharmaceuticals. The aim of this study was to combine the thermo-gelling polymer poloxamer 407 and mucoadhesive polymers chitosan (CS) and methyl cellulose (MC) for developing effective and long-acting ophthalmic delivery systems for L-carnosine (a natural dipeptide drug) for corneal wound healing. METHODS: The effect of different polymer combinations on parameters like gelation time and temperature, rheological properties, texture, spreading coefficients, mucoadhesion, conjunctival irritation potential, in vitro release, and ex vivo permeation were studied. Healing of corneal epithelium ulcers was investigated in a rabbit’s eye model. RESULTS: Both gelation time and temperature were significantly dependent on the concentrations of poloxamer 407 and additive polymers (chitosan and methyl cellulose), where it ranged from <10 s to several minutes. Mechanical properties investigated through texture analysis (hardness, adhesiveness, and cohesiveness) were dependent on composition. Promising spreading-ability, mucoadhesion, transcorneal permeation of L-carnosine, high ocular tolerability, and enhanced corneal epithelium wound healing were recorded for poloxamer 407/chitosan systems. CONCLUSION: In situ gelling systems comprising combinations of poloxamer-chitosan exhibited superior gelation time and temperature, mucoadhesion, and rheological characteristics suitable for effective long-acting drug delivery systems for corneal wounds

    Triple Procedure for Dense Cataractous Neovascular Glaucoma Patients

    No full text
    Purpose. One of the most difficult refractory glaucomas is the neovascular type (NVG), and its association with dense cataract adds to this difficulty. This study aimed to provide results of the triple surgical procedure for such conditions. Methods. 12 eyes of 12 patients with NVG and dense cataract were included in this case series study. The mean age of patients was 57.25 ± 5.9 years. The mean preoperative intraocular pressure (IOP) was 47.25 ± 4.04 mmHg with maximum antiglaucoma therapy. The mean best corrected distant visual acuity (BCDVA) in LogMAR was 2.13 ± 0.38. All patients received intravitreal injection of 1.25 mg (0.05 ml) bevacizumab followed by phacoemulsification, pars plana vitrectomy (PPV) including panretinal photocoagulation (PRP), and trabeculectomy with mitomycin C (MMC). Mean IOP and BCDVA changes were the main outcome results of this study. Results. The follow-up period was 2 years. The mean BCDVA was improved to 1.22 ± 0.35, 1.13 ± 0.34, 1.12 ± 0.37, 1.06 ± 0.38, and 1.01 ± 0.37 at 1, 3, 6, 12, and 24 months, respectively, after this procedure. This improvement was statistically significant when compared with preoperative BCDVA (P<0.0001). The mean postoperative IOP was dropped to 20.08 ± 4.1, 17.08 ± 2.1, 17.17 ± 5, 15.75 ± 4.7, and 16.17 ± 6.1 mmHg, respectively. At the last follow-up, the mean IOP was statistically significantly lower than preoperative IOP (P<0.0001) at the previously mentioned time points. The success rate was complete in 90.9% of eyes and qualified in 100% of eyes. Iris and angle neovascularization had regressed significantly in all patients, and no serious complications occurred during the follow-up period. Conclusions. This triple surgery can safely improve patients with NVG and dense cataract regarding BCDVA and IOP control. This trial is registered with NCT04143620

    Nutritional Composition, Antioxidant Activity, Cytotoxicity, and Enzymatic Potential of <i>Ficus nitida</i>-Associated <i>Tomophagus colossus</i>

    No full text
    A fruiting body of a basidiomycete fungus was discovered growing on chopped Ficus nitida tree trunks in the student housing on the Assiut University campus during the course of this inquiry and a normal collecting operation in the Assiut Governorate, Egypt. Following the growth of the basidioma’s inner tissue on PDA, fungal mycelial growth was achieved. Internal transcribed spacer region (ITS) sequencing has allowed for the identification of the fungus as Tomophagus colossus. On the dry weight basis, chemical analysis of T. colossus AUMC 14536 basidioma revealed that it contains 28.81% carbohydrates, 25.34% crude fats, 23.44% crude fibers, 20.64% crude proteins, and 3.02% ash, in addition to potassium, phosphorus, calcium, selenium, iron, and zinc (133.59, 114.46, 6.27, 3.08, 1.28, and 0.73 mg/100 g dry weight, respectively). The total phenolic compounds (39.26 mg/g) and total flavonoids (5.62 mg/g) were also evaluated. The basidioma extract’s antioxidant activity was assessed as %DPPH radical scavenging activity with an IC50 of 4.15 µg/mL compared with a 1.89 µg/mL IC50 of ascorbic acid. In solid-state fermentation (SSF), the fungus could ferment broad bean straw, palm leaf hay, rice husk, rice straw, sugarcane bagasse, and wheat bran to produce endoglucanase, exoglucanase, laccase, pectinase, and xylanase in substantial amounts. Specific activity exhibited the highest values for endoglucanase (81.48 U/mg), exoglucanase (114.35 U/mg), pectinase (81.94 U/mg), and xylanase (70.18 U/mg) on the rice husk, while the peak of laccase activity (94.27 U/mg) was gained on bean straw. This is the first assessment of the organism’s nutritional value, amino acid content, antioxidant activity, and enzymatic capabilities in Egypt

    Dihydrofolate reductase (DHFR) inhibition and molecular modeling study of some 6-bromo- or 6,8-dibromo-quinazolin-4(3H)-ones

    No full text
    Objectives: The dihydrofolate reductase (DHFR) inhibitory activity of 6-bromo- and 6,8-dibromo-quinazolin-4(3H)-ones (7–25) were studied to define the structural features and requirements that enhance selectivity and specificity for the proper binding to the enzyme active site. Methods: Compounds 7–25 were tested for their in vitro DHFR inhibition. As an application of the use of DHFR inhibitors, in vitro antitumor activity using disease-oriented human cell lines assay was performed. Key findings: Compounds 19, 20, and 22 showed remarkable DHFR inhibitory activity, inhibitory concentration (IC50 0.6, 0.2, and 0.1 μM, respectively). Compounds 12, 17, 18, 20, and 24 proved to be broad spectrum antitumor with median IC50 values of 0.6, 0.6, 0.5, 0.6, and 0.7 μM, respectively. Molecular docking study results revealed that the active DHFR inhibitors 22 and 20 bind to DHFR with similar amino acid residues as methotrexate, especially Arg 28. Conclusions: The mono-bromo series proved to be more active than the di-bromo counterparts and the 3-(2-hydrazinyl-acetyl)- is more active than its 3-(acetohydrazide) isoster. The investigated compounds could be used as template model for further optimization

    Solulan C24- and Bile Salts-Modified Niosomes for New Ciprofloxacin Mannich Base for Combatting Pseudomonas-Infected Corneal Ulcer in Rabbits

    No full text
    Keratitis is a global health issue that claims the eye sight of millions of people every year. Dry eye, contact lens wearing and refractive surgeries are among the most common causes. The resistance rate among fluoroquinolone antibiotics is &gt;30%. This study aims at formulating a newly synthesized ciprofloxacin derivative (2b) niosomes and Solulan C24-, sodium cholate- and deoxycholate-modified niosomes. The prepared niosomal dispersions were characterized macroscopically and microscopically (SEM) and by percentage entrapment efficiency, in vitro release and drug release kinetics. While the inclusion of Solulan C24 produced something discoidal-shaped with a larger diameter, both cholate and deoxycholate were unsuccessful in forming niosomes dispersions. Conventional niosomes and discomes (Solulan C24-modified niosomes) were selected for further investigation. A corneal ulcer model inoculated with colonies of Pseudomonas aeruginosa in rabbits was developed to evaluate the effectiveness of keratitis treatment of the 2b-loaded niosomes and 2b-loaded discomes compared with Ciprocin&reg; (ciprofloxacin) eye drops and control 2b suspension. The histological documentation and assessment of gene expression of the inflammatory markers (IL-6, IL1B, TNF&alpha; and NF-&kappa;B) indicated that both 2b niosomes and discomes were superior treatments and can be formulated at physiological pH 7.4 compatible with the ocular surface, compared to both 2b suspension and Ciprocin&reg; eye drops
    corecore