8 research outputs found

    QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum - Classical Neural Network

    Full text link
    Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets. Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets. Experimental evaluations on a benchmark dataset demonstrate QAmplifyNet's superiority over classical models, quantum ensembles, quantum neural networks, and deep reinforcement learning. Its proficiency in handling short, imbalanced datasets makes it an ideal solution for supply chain management. To enhance model interpretability, we use Explainable Artificial Intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet seamlessly integrates into real-world supply chain management systems, enabling proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, providing superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management

    Big Data - Supply Chain Management Framework for Forecasting: Data Preprocessing and Machine Learning Techniques

    Full text link
    This article intends to systematically identify and comparatively analyze state-of-the-art supply chain (SC) forecasting strategies and technologies. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, and optimization), forecasting effects on human-workforce, inventory, and overall SC. Initially, the need to collect data according to SC strategy and how to collect them has been discussed. The article discusses the need for different types of forecasting according to the period or SC objective. The SC KPIs and the error-measurement systems have been recommended to optimize the top-performing model. The adverse effects of phantom inventory on forecasting and the dependence of managerial decisions on the SC KPIs for determining model performance parameters and improving operations management, transparency, and planning efficiency have been illustrated. The cyclic connection within the framework introduces preprocessing optimization based on the post-process KPIs, optimizing the overall control process (inventory management, workforce determination, cost, production and capacity planning). The contribution of this research lies in the standard SC process framework proposal, recommended forecasting data analysis, forecasting effects on SC performance, machine learning algorithms optimization followed, and in shedding light on future research

    Genomic landscape of prominent XDR Acinetobacter clonal complexes from Dhaka, Bangladesh

    Get PDF
    Background: Acinetobacter calcoaceticus-A. baumannii (ACB) complex pathogens are known for their prevalence in nosocomial infections and extensive antimicrobial resistance (AMR) capabilities. While genomic studies worldwide have elucidated the genetic context of antibiotic resistance in major international clones (ICs) of clinical Acinetobacter spp., not much information is available from Bangladesh. In this study, we analysed the AMR profiles of 63 ACB complex strains collected from Dhaka, Bangladesh. Following this, we generated draft genomes of 15 of these strains to understand the prevalence and genomic environments of AMR, virulence and mobilization associated genes in different Acinetobacter clones. Results: Around 84% (n = 53) of the strains were extensively drug resistant (XDR) with two showing pan-drug resistance. Draft genomes generated for 15 strains confirmed 14 to be A. baumannii while one was A. nosocomialis. Most A. baumannii genomes fell under three clonal complexes (CCs): the globally dominant CC1 and CC2, and CC10; one strain had a novel sequence type (ST). AMR phenotype-genotype agreement was observed and the genomes contained various beta-lactamase genes including blaOXA-23 (n = 12), blaOXA-66 (n = 6), and blaNDM-1 (n = 3). All genomes displayed roughly similar virulomes, however some virulence genes such as the Acinetobactin bauA and the type IV pilus gene pilA displayed high genetic variability. CC2 strains carried highest levels of plasmidic gene content and possessed conjugative elements carrying AMR genes, virulence factors and insertion sequences. Conclusion: This study presents the first comparative genomic analysis of XDR clinical Acinetobacter spp. from Bangladesh. It highlights the prevalence of different classes of beta-lactamases, mobilome-derived heterogeneity in genetic architecture and virulence gene variability in prominent Acinetobacter clonal complexes in the country. The findings of this study would be valuable in understanding the genomic epidemiology of A. baumannii clones and their association with closely related pathogenic species like A. nosocomialis in Bangladesh. 2022, The Author(s).This work was funded by North South University Conference Travel and Research Grants (NSU CTRG) Committee under the grant number: NSU-RP-18-042.Scopu

    Emotional State Classification from MUSIC-Based Features of Multichannel EEG Signals

    No full text
    Electroencephalogram (EEG)-based emotion recognition is a computationally challenging issue in the field of medical data science that has interesting applications in cognitive state disclosure. Generally, EEG signals are classified from frequency-based features that are often extracted using non-parametric models such as Welch’s power spectral density (PSD). These non-parametric methods are not computationally sound due to having complexity and extended run time. The main purpose of this work is to apply the multiple signal classification (MUSIC) model, a parametric-based frequency-spectrum-estimation technique to extract features from multichannel EEG signals for emotional state classification from the SEED dataset. The main challenge of using MUSIC in EEG feature extraction is to tune its parameters for getting the discriminative features from different classes, which is a significant contribution of this work. Another contribution is to show some flaws of this dataset for the first time that contributed to achieving high classification accuracy in previous research works. This work used MUSIC features to classify three emotional states and achieve 97% accuracy on average using an artificial neural network. The proposed MUSIC model optimizes a 95–96% run time compared with the conventional classical non-parametric technique (Welch’s PSD) for feature extraction

    TB-CXRNet: Tuberculosis and Drug-Resistant Tuberculosis Detection Technique Using Chest X-ray Images

    Get PDF
    Tuberculosis (TB) is a chronic infectious lung disease, which caused the death of about 1.5 million people in 2020 alone. Therefore, it is important to detect TB accurately at an early stage to prevent the infection and associated deaths. Chest X-ray (CXR) is the most popularly used method for TB diagnosis. However, it is difficult to identify TB from CXR images in the early stage, which leads to time-consuming and expensive treatments. Moreover, due to the increase of drug-resistant tuberculosis, the disease becomes more challenging in recent years. In this work, a novel deep learning-based framework is proposed to reliably and automatically distinguish TB, non-TB (other lung infections), and healthy patients using a dataset of 40,000 CXR images. Moreover, a stacking machine learning-based diagnosis of drug-resistant TB using 3037 CXR images of TB patients is implemented. The largest drug-resistant TB dataset will be released to develop a machine learning model for drug-resistant TB detection and stratification. Besides, Score-CAM-based visualization technique was used to make the model interpretable to see where the best performing model learns from in classifying the image. The proposed approach shows an accuracy of 93.32% for the classification of TB, non-TB, and healthy patients on the largest dataset while around 87.48% and 79.59% accuracy for binary classification (drug-resistant vs drug-sensitive TB), and three-class classification (multi-drug resistant (MDR), extreme drug-resistant (XDR), and sensitive TB), respectively, which is the best reported result compared to the literature. The proposed solution can make fast and reliable detection of TB and drug-resistant TB from chest X-rays, which can help in reducing disease complications and spread

    Deep Learning Framework for Liver Segmentation from T1-Weighted MRI Images

    Get PDF
    The human liver exhibits variable characteristics and anatomical information, which is often ambiguous in radiological images. Machine learning can be of great assistance in automatically segmenting the liver in radiological images, which can be further processed for computer-aided diagnosis. Magnetic resonance imaging (MRI) is preferred by clinicians for liver pathology diagnosis over volumetric abdominal computerized tomography (CT) scans, due to their superior representation of soft tissues. The convenience of Hounsfield unit (HoU) based preprocessing in CT scans is not available in MRI, making automatic segmentation challenging for MR images. This study investigates multiple state-of-the-art segmentation networks for liver segmentation from volumetric MRI images. Here, T1-weighted (in-phase) scans are investigated using expert-labeled liver masks from a public dataset of 20 patients (647 MR slices) from the Combined Healthy Abdominal Organ Segmentation grant challenge (CHAOS). The reason for using T1-weighted images is that it demonstrates brighter fat content, thus providing enhanced images for the segmentation task. Twenty-four different state-of-the-art segmentation networks with varying depths of dense, residual, and inception encoder and decoder backbones were investigated for the task. A novel cascaded network is proposed to segment axial liver slices. The proposed framework outperforms existing approaches reported in the literature for the liver segmentation task (on the same test set) with a dice similarity coefficient (DSC) score and intersect over union (IoU) of 95.15% and 92.10%, respectively.This research was funded by Qatar University High Impact grant QUHI-CENG-23/24-216 and student grant QUST-1-CENG-2023-796 and is also supported via funding from Prince Sattam Bin Abdulaziz University project number (PSAU/2023/R/1444). The open-access publication cost is covered by the Qatar National Library

    Prognostic Model of ICU Admission Risk in Patients with COVID-19 Infection Using Machine Learning

    No full text
    With the onset of the COVID-19 pandemic, the number of critically sick patients in intensive care units (ICUs) has increased worldwide, putting a burden on ICUs. Early prediction of ICU requirement is crucial for efficient resource management and distribution. Early-prediction scoring systems for critically ill patients using mathematical models are available, but are not generalized for COVID-19 and Non-COVID patients. This study aims to develop a generalized and reliable prognostic model for ICU admission for both COVID-19 and non-COVID-19 patients using best feature combination from the patient data at admission. A retrospective cohort study was conducted on a dataset collected from the pulmonology department of Moscow City State Hospital between 20 April 2020 and 5 June 2020. The dataset contains ten clinical features for 231 patients, of whom 100 patients were transferred to ICU and 131 were stable (non-ICU) patients. There were 156 COVID positive patients and 75 non-COVID patients. Different feature selection techniques were investigated, and a stacking machine learning model was proposed and compared with eight different classification algorithms to detect risk of need for ICU admission for both COVID-19 and non-COVID patients combined and COVID patients alone. C-reactive protein (CRP), chest computed tomography (CT), lung tissue affected (%), age, admission to hospital, and fibrinogen parameters at hospital admission were found to be important features for ICU-requirement risk prediction. The best performance was produced by the stacking approach, with weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 84.45%, 84.48%, 83.64%, 84.47%, and 84.48%, respectively, for both types of patients, and 85.34%, 85.35%, 85.11%, 85.34%, and 85.35%, respectively, for COVID-19 patients only. The proposed work can help doctors to improve management through early prediction of the risk of need for ICU admission of patients during the COVID-19 pandemic, as the model can be used for both types of patients

    BIO-CXRNET: a robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest X-ray images and clinical data

    No full text
    Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk.Open Access funding provided by the Qatar National Library. This work was supported by the Qatar National Research Grant: UREP28-144-3-046. The statements made herein are solely the responsibility of the authors.Scopu
    corecore