37 research outputs found
Dynamic predictive coding by the retina
Retinal ganglion cells convey the visual image from the eye to the brain. They generally encode local differences in space and changes in time rather than the raw image intensity. This can be seen as a strategy of predictive coding, adapted through evolution to the average image statistics of the natural environment. Yet animals encounter many environments with visual statistics different from the average scene. Here we show that when this happens, the retina adjusts its processing dynamically. The spatio-temporal receptive fields of retinal ganglion cells change after a few seconds in a new environment. The changes are adaptive, in that the new receptive field improves predictive coding under the new image statistics. We show that a network model with plastic synapses can account for the large variety of observed adaptations
The Effect of Cyanine Dye NK-4 on Photoreceptor Degeneration in a Rat Model of Early-Stage Retinitis Pigmentosa
The present study aimed to evaluate the effects of NK-4 on the apoptosis of photoreceptors in a rat model of retinitis pigmentosa and explore the mechanism underlying anti-apoptosis activity. The Royal College of Surgeons (RCS) rats received an intravitreous injection of NK-4 solution in the left eye and vehicle control in the right eye. Apoptosis was detected by TUNEL method in frozen sections of the eyes. The retinal tissues of the rats were dissected for RNA-seq analysis. Functional and pathway enrichment analyses of differentially expressed genes (DEGs) were performed by using Metascape and DAVID software. The expression levels of DEGs were confirmed by real-time quantitative PCR (RT-qPCR). The number of apoptotic cells decreased in the outer nuclear layer (ONL) and the thickness of the ONL was significantly thicker in the retina of NK-4-injected eyes, compared with control eyes. Five DEGs were identified by RNA-seq analysis, and Hmox1, Mt1, Atf5, Slc7a11, and Bdh2 were confirmed to be up-regulated by RT-qPCR. Functional and pathway enrichment analysis of the up-regulated genes showed that anti-apoptosis effects of NK-4 in the retina of RCS rats may be related to the pathways of metal ion homeostasis, negative regulation of neuron death, response to toxic substance, and pigment metabolic process. We found a potential mechanism of NK-4, providing a new viewpoint for the development of more therapeutic uses of NK-4 in the future
Effect of NK-5962 on Gene Expression Profiling of Retina in a Rat Model of Retinitis Pigmentosa
Purpose: NK-5962 is a key component of photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina of RCS rats. Methods: RCS rats received intravitreal injections of NK-5962 solution in the left eye at the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes (DEGs), the Metascape and DAVID databases were used. Results: In total, 55 up-regulated DEGs, and one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962. These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962 in RCS rat retinas. Conclusions: Our findings suggest that photoelectric dye NK-5962 may delay apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. Overall, our RNA-seq and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for developing new therapeutic strategies for patients with retinitis pigmentosa.</jats:p
Behavior tests and immunohistochemical retinal response analyses in RCS rats with subretinal implantation of Okayama-University-type retinal prosthesis
We have developed a photoelectric dye-coupled polyethylene film as a prototype of retinal prosthesis, which we named Okayama University-type retinal prosthesis. The purposes of this study are to conduct behavior tests to assess vision in Royal College of Surgeons (RCS) rats that underwent subretinal implantation of the dye-coupled film and to reveal retinal response to the dye-coupled film by immunohistochemistry. Polyethylene films were made of polyethylene powder at refined purity, and photoelectric dyes were coupled to the film surface at higher density compared with the prototype. Either dye-coupled film or dye-uncoupled plain film used as a control was implanted subretinally from a scleral incision in both eyes of an RCS rat at 6 weeks of the age. Behavior tests 2, 4, 6, and 8 weeks after implantation were conducted by observing head turning or body turning in the direction consistent with clockwise or counterclockwise rotation of a black-and-white-striped drum around a transparent cage housed with the rat. After the behavior tests at 8 weeks, rats' eyes were enucleated to confirm subretinal implantation of the films and processed for immunohistochemistry. In the behavior tests, the number of head turnings consistent with the direction of the drum rotation was significantly larger in RCS rats with dye-coupled- compared with plain-film implantation [P < 0.05, repeated-measure analysis of variance (ANOVA), n = 7]. The number of apoptotic neurons was significantly smaller in eyes with dye-coupled- compared with plain-film implantation (P < 0.05, Mann-Whitney U test, n = 6). In conclusion, subretinal implantation of photoelectric dye-coupled films restored vision in RCS rats and prevented the remaining retinal neurons from apoptosis
Candidate Genes in Testing Strategies for Linkage Analysis and Bioinformatic Sorting of Whole Genome Sequencing Data in Three Small Japanese Families with Idiopathic Superior Oblique Muscle Palsy
Idiopathic superior oblique muscle palsy is a major type of paralytic, non-comitant strabismus and presents vertical and cyclo-torsional deviation of one eye against the other eye, with a large vertical fusion range and abnormal head posture such as head tilt. Genetic background is considered to play a role in its development, as patients with idiopathic superior oblique muscle palsy have varying degrees of muscle hypoplasia and, rarely, the complete absence of the muscle, that is, aplasia. In this study, whole genome sequencing was performed, and single nucleotide variations and short insertions/deletions (SNVs/InDels) were annotated in two patients each in three small families (six patients in total) with idiopathic superior oblique muscle palsy, in addition to three normal individuals in one family. At first, linkage analysis was carried out in the three families and SNVs/InDels in chromosomal loci with negative LOD scores were excluded. Next, SNVs/InDels shared by the six patients, but not by the three normal individuals, were chosen. SNVs/InDels were further narrowed down by choosing low-frequency (<1%) or non-registered SNVs/InDels in four databases for the Japanese population, and then by choosing SNVs/InDels with functional influence, leading to one candidate gene, SSTR5-AS1 in chromosome 16. The six patients were heterozygous for 13-nucleotide deletion in SSTR5-AS1, except for one homozygous patient, while the three normal individuals were wild type. Targeted polymerase chain reaction (PCR) and direct sequencing of PCR products confirmed the 13-nucleotide deletion in SSTR5-AS1. In the face of newly-registered SSTR5-AS1 13-nucleotide deletion at a higher frequency in a latest released database for the Japanese population, the skipping of low-frequency and non-registration sorting still resulted in only 13 candidate genes including SSTR5-AS1 as common variants. The skipping of linkage analysis also led to the same set of 13 candidate genes. Different testing strategies that consisted of linkage analysis and simple unintentional bioinformatics could reach candidate genes in three small families with idiopathic superior oblique muscle palsy
Reconstruction-Dependent Recovery from Anorexia and Time-Related Recovery of Regulatory Ghrelin System in Gastrectomized Rats
Gastrectomy reduces food intake and body weight (BW) hampering recovery of physical conditions. It also reduces plasma levels of stomach-derived orexigenic ghrelin. This study explored changes in orexigenic ghrelin system in rats receiving total gastrectomy with Billroth II (B-II) or Roux-en-Y (R-Y) method. Feeding and BW were reduced by gastrectomy and subsequently recovered to a greater extent with R-Y than B-II while plasma ghrelin decreased similarly. At postoperative 12th week, ghrelin contents increased in the duodenum and pancreas, plasma ghrelin levels increased upon fasting, and ghrelin injection promoted feeding but not in earlier periods. In summary, gastrectomized rats partially recover feeding and BW, in a reconstruction-dependent manner. At 12th week, ghrelin is upregulated in extra-stomach tissues, plasma ghrelin levels are physiologically regulated, and orexigenic effect of exogenous ghrelin is restored. This time-related recovery of ghrelin system may provide a strategy for promoting feeding, BW, and thereby physical conditions in gastrectomized patients
A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud
AbstractMammal–fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements
Protocol for a multicentre, prospective, cohort study to investigate patient satisfaction and quality of life after immediate breast reconstruction in Japan: the SAQLA study
Introduction The aim of breast reconstruction (BR) is to improve patients' health-related quality of life (HRQOL). Therefore, measuring patient-reported outcomes (PROs) would clarify the value and impact of BR on a patient's life and thus would provide evidence-based information to help decision-making. The Satisfaction and Quality of Life After Immediate Breast Reconstruction study aimed to investigate satisfaction and HRQOL in Japanese patients with breast cancer who undergo immediate breast reconstruction (IBR). Methods and analysis This ongoing prospective, observational multicentre study will assess 406 patients who had unilateral breast cancer and underwent mastectomy and IBR, and were recruited from April 2018 to July 2019. All participants were recruited from seven hospitals: Okayama University Hospital, Iwate Medical University Hospital, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Showa University Hospital, University of Tsukuba Hospital, Osaka University Hospital and Yokohama City University Medical Center. The patients will be followed up for 36 months postoperatively. The primary endpoint of this study will be the time-dependent changes in BREAST-Q satisfaction with breast subscale scores for 12 months after reconstructive surgery, which will be collected via an electronic PRO system. Ethics and dissemination This study will be performed in accordance with the Ethical Guidelines for Medical and Health Research Involving Human Subjects published by Japan's Ministry of Education, Science and Technology and the Ministry of Health, Labour and Welfare, the modified Act on the Protection of Personal Information and the Declaration of Helsinki. This study protocol was approved by the institutional ethics committee at the Okayama University Graduate School of Medicine, Dentistry, on 2 February 2018 (1801-039) and all other participating sites. The findings of this trial will be submitted to an international peer-reviewed journal
Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions
The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and these statistical complexities can bias receptive field (RF) estimates when standard techniques such as spike-triggered averaging or reverse correlation are used. While a number of approaches have been developed to explicitly correct the bias due to stimulus correlations, there is no complementary technique to correct the bias due to stimulus asymmetries. Here, we develop a method for RF estimation that corrects reverse correlation RF estimates for the spherical asymmetries present in natural stimuli. Using simulated neural responses, we demonstrate how stimulus asymmetries can bias reverse-correlation RF estimates (even for uncorrelated stimuli) and illustrate how this bias can be removed by explicit correction. We demonstrate the utility of the asymmetry correction method under experimental conditions by estimating RFs from the responses of retinal ganglion cells to natural stimuli and using these RFs to predict responses to novel stimuli