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Abstract: Purpose: NK-5962 is a key component of photoelectric dye-coupled polyethylene film,
designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-
5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College
of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to
explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina
of RCS rats. Methods: RCS rats received intravitreal injections of NK-5962 solution in the left eye at
the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration
of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were
housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for
RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes
(DEGs), the Metascape and DAVID databases were used. Results: In total, 55 up-regulated DEGs, and
one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962.
These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated
DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K–Akt
signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor
cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived
factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962
in RCS rat retinas. Conclusions: Our findings suggest that photoelectric dye NK-5962 may delay
apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular
matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. Overall, our RNA-seq
and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS
rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for
developing new therapeutic strategies for patients with retinitis pigmentosa.

Keywords: apoptosis; drug; retina; photoreceptors; retinitis pigmentosa; extracellular exosome;
extracellular matrix organization; PI3K–Akt signaling pathway; SERPINF1; pigment epithelium-
derived factor (PEDF)

1. Introduction

Retinitis pigmentosa (RP) is a hereditary disease that causes blindness due to the
loss of retinal photoreceptor cells. Patients with RP experience slowly progressive loss
in the peripheral visual field, finally leading to blindness in later decades [1]. Nowa-
days, many treatments including neurotrophic factors [2,3], antioxidants [4–6], retinal
prostheses [7–12], and gene therapies [13] are used to rescue retinal degeneration and
improve the visual function.
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RCS rats were used as an animal model of RP in many previous studies. In the RCS rat,
a 409 bp deletion in the receptor tyrosine kinase MERTK gene mutation leads to reduced
phagocytic function of the retinal pigment epithelial (RPE) cells and causes accumulation
of photoreceptor outer segment debris in the subretinal space. Later, this debris blocks
efficient oxygen and nutrient transport to photoreceptor cells and then leads to progressive
photoreceptor degeneration and subsequent vison decline [14–16]. Photoreceptor cells in
the RCS rats begin to degenerate on postnatal day (P) 22. Apoptosis of photoreceptors
reaches its peak on P32, and then it gradually decreases [17].

The photoelectric dye NK-5962 (Figure 1A), 2-[2-[4-(dibutylamino)phenyl]ethenyl]-
3-carboxymethylbenzothiazolium bromide, generates electric potential in response to
light [18,19]. We previously developed an Okayama University-type retinal prosthesis
(OUReP™), which is composed of NK-5962-coupled polyethylene thin films, and showed
that OUReP™ evokes neuronal response by light stimulation [20,21]. We found that the
NK-5962 molecule itself protected both neural retinal cells and RPE cells from apoptosis
through the primary mixed culture of retinal cells, NK-5962 coupled film transplanted into
the eyes of RCS rats, and intravitreal injection of NK-5962 solution in RCS rats [22–24]. We
recently demonstrated that NK-5962 shows low levels of reactive oxygen species (ROS)
generation and that its phototoxicity is very low. These findings suggest that NK-5962 is a
good candidate for the treatment of RP [25].

In this study, we aimed to explore the mechanisms involved in the anti-apoptotic
effect of intravitreal injection of NK-5962 in RCS rats by RNA-seq and bioinformatics
analyses [26].
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Figure 1. NK-5962 and experimental design. (A) Chemical structure of NK-5962. (B) NK-5962 solu-
tion (8.2 μg/mL). (C) Experimental schedule. 

2. Results 
2.1. Screening of DEGs in the Eyes Injected with NK-5962 

In order to reveal the mechanism of NK-5962 in attenuating retinal cell apoptosis, we 
examined the changes in gene expression between NK-5962-treated and control groups 
by RNA-seq analysis. The total number of reads per sample ranged from 46.2 million to 
68.6 million. We only focused on the genes with FPKM (fragments per kilobase million) > 
0.1 in each group to avoid genes with low expression. Genes with log(FC) ≥ 0.672 and a p 
value < 0.05 were selected for follow-up studies. Volcano plots show the global transcrip-
tional changes in NK-5962-injected eyes versus vehicle-treated eyes at the age of 5 weeks 
(Figure 2). Totally, 55 genes (Table 1) were chosen as up-regulated DEGs in the eyes 
treated with NK-5962. According to the p values and log(FC) values, Serpin Family F 
member 1 (SERPINF1) was found to be the most significantly up-regulated gene in NK-
5962-treated retinas compared with the controls (Table 1). By contrast, we found a gene—
the LYVE1 gene—that was commonly down-regulated among samples treated with NK-
5962 (Table 2). 
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Figure 1. NK-5962 and experimental design. (A) Chemical structure of NK-5962. (B) NK-5962
solution (8.2 µg/mL). (C) Experimental schedule.

2. Results
2.1. Screening of DEGs in the Eyes Injected with NK-5962

In order to reveal the mechanism of NK-5962 in attenuating retinal cell apoptosis, we
examined the changes in gene expression between NK-5962-treated and control groups
by RNA-seq analysis. The total number of reads per sample ranged from 46.2 million to
68.6 million. We only focused on the genes with FPKM (fragments per kilobase million)
>0.1 in each group to avoid genes with low expression. Genes with log(FC) ≥ 0.672
and a p value < 0.05 were selected for follow-up studies. Volcano plots show the global
transcriptional changes in NK-5962-injected eyes versus vehicle-treated eyes at the age
of 5 weeks (Figure 2). Totally, 55 genes (Table 1) were chosen as up-regulated DEGs in
the eyes treated with NK-5962. According to the p values and log(FC) values, Serpin
Family F member 1 (SERPINF1) was found to be the most significantly up-regulated gene
in NK-5962-treated retinas compared with the controls (Table 1). By contrast, we found a
gene—the LYVE1 gene—that was commonly down-regulated among samples treated with
NK-5962 (Table 2).
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Figure 2. The volcano plot shows the distribution of the fold changes of each mRNA tran-
script in NK-5962-injected eyes versus vehicle-treated eyes. Genes that pass a threshold of
log(FC) > 0.585, p value < 0.05 are highlighted by red (up-regulated) and blue (down-regulated),
respectively. Only one gene (LYVE1) was commonly down-regulated among samples treated with
NK-5962. FC: fold change.

Table 1. Up-regulated genes in NK-5962-treated retinas.

Gene Name Description Locus Log2(Fold_Change) p_Value q_Value References

SERPINF1 Serpin Family F Member 1 chr10:62713440-62739444 2.722 5.00 × 10−5 0.012 [27,28]
COL4A1 Collagen Type IV Alpha 1 Chain chr16:83045182-83157835 2.651 5.00 × 10−5 0.012 [29]
CRYAB Crystallin Alpha B chr8:54107289-54111502 2.368 5.00 × 10−5 0.012 [30]

COL4A2 Collagen Type IV Alpha 2 Chain chr16:82899293-83045155 2.293 5.00 × 10−5 0.012 [31]
HSPG2 Heparan Sulfate Proteoglycan 2 chr5:156226988-156328912 2.089 5.00 × 10−5 0.012 [32]
AQP1 Aquaporin 1 chr4:84098345-84110524 2.043 5.00 × 10−5 0.012 [33]

ANXA1 Annexin A1 chr1:223478435-223494455 1.798 5.00 × 10−5 0.012 [34]
Ecrg4 ECRG4 augurin precursor chr9:42930953-42950605 1.575 5.00 × 10−5 0.012 [35]
WLS Wnt Ligand Secretion Mediator chr2:258014377-258128180 1.392 5.00 × 10−5 0.012 [36]

SLC22A8 Solute Carrier Family 22
Member 8 chr1:211269365-211287596 1.388 5.00 × 10−5 0.012 [37]

SOD3 Superoxide dismutase 3 chr14:63381446-63387180 1.328 5.00 × 10−5 0.012 [38,39]
FBLN2 Fibulin 2 chr4:125380499-125441075 1.296 5.00 × 10−5 0.012 [40]
OPTC Opticin chr13:46846755-46858100 1.292 5.00 × 10−5 0.012 [41]

SLC13A4 Solute Carrier Family 13
Member 4 chr4:62679592-62724547 1.265 5.00 × 10−5 0.012 [42]

FGFR2 Fibroblast Growth Factor
Receptor 2 chr1:189482974-189589279 1.243 5.00 × 10−5 0.012 [43]

FBLN1 Fibulin 1 chr7:123208153-123287289 1.194 5.00 × 10−5 0.012 [44]
TYRP1 Tyrosinase-Related Protein 1 chr5:99518305-99537289 1.190 5.00 × 10−5 0.012 [45]
OGN Osteoglycin chr17:20969065-21145330 1.160 5.00 × 10−5 0.012 [46]
GJA1 Gap Junction Protein Alpha 1 chr20:35409814-35422259 1.117 5.00 × 10−5 0.012 [47]

WFDC1 WAP Four-Disulfide Core
Domain 1 chr19:49924309-49943113 1.116 5.00 × 10−5 0.012 [48]

LTBP2 Latent Transforming Growth
Factor Beta Binding Protein 2 chr6:108826438-108924895 1.112 5.00 × 10−5 0.012 [49]

COL4A5 Collagen Type IV Alpha 5 Chain chrX:36918650-37130562 1.105 5.00 × 10−5 0.012 [50]
DAPL1 Death-Associated Protein Like 1 chr3:41187966-41207910 1.070 5.00 × 10−5 0.012 [51]
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Table 1. Cont.

Gene Name Description Locus Log2(Fold_Change) p_Value q_Value References

ENPP2 Ectonucleotide Pyrophos-
phatase/Phosphodiesterase 2 chr7:91295814-91377947 0.997 5.00 × 10−5 0.012 [52]

SLC13A3 Solute Carrier Family 13
Member 3 chr3:156447899-156510620 0.914 5.00 × 10−5 0.012 [53]

MXRA8 Matrix Remodeling Associated 8 chr5:172698112-172702607 0.899 5.00 × 10−5 0.012 [54]
COL9A1 Collagen Type IX Alpha 1 Chain chr9:22907067-22990836 0.855 5.00 × 10−5 0.012 [55]

COL8A1 Collagen Type VIII Alpha
1 Chain chr11:43604973-43737050 1.879 1.50 × 10−4 0.029 [56]

MFRP Membrane Frizzled-Related
Protein chr8:47084055-47089218 1.169 1.50 × 10−4 0.029 [57]

COL5A1 Collagen Type V Alpha 1 Chain chr3:6825780-6973521 0.901 1.50 × 10−4 0.029 [58]
FBN1 Fibrillin 1 chr3:112607811-112804951 0.895 1.50 × 10−4 0.029 [59]

COL18A1 Collagen alpha-1(XVIII) chain chr20:11872458-11982466 0.834 1.50 × 10−4 0.029 [60]

SLC6A13 Solute Carrier Family 6
Member 13 chr4:157736263-157771945 0.942 2.00 × 10−4 0.036 [61]

ABI3BP ABI Family Member 3 Binding
Protein chr11:44853363-45072422 1.122 2.50 × 10−4 0.041 [62]

CPXM1 Carboxypeptidase X, M14
Family Member 1 chr3:118000979-118007777 1.102 2.50 × 10−4 0.041 [63]

FMOD Fibromodulin chr13:46987713-46998331 0.887 2.50 × 10−4 0.041 [64]
VCAN Versican chr2:19712628-19812592 0.868 4.00 × 10−4 0.061 [44]

SERPINH1 Serpin Family H Member 1 chr1:156666873-156674336 0.765 4.00 × 10−4 0.061 [65]

PCOLCE Procollagen C-Endopeptidase
Enhancer chr12:19672504-19690374 1.398 4.50 × 10−4 0.068 [66]

SLC26A4 Solute Carrier Family
26 Member chr6:49389211-49427000 0.835 5.50 × 10−4 0.078 [67]

FSTL1 Follistatin Like 1 chr11:64680819-64735683 0.694 5.50 × 10−4 0.078 [68]
OLFML2A Olfactomedin Like 2A chr3:18731164-18751940 0.713 6.50 × 10−4 0.089 [69]

MRC2 Mannose Receptor C Type 2 chr10:94689060-94753073 0.831 9.00 × 10−4 0.117 [70]
GSTM2 Glutathione S-Transferase Mu 2 chr2:203549021-203553380 1.207 9.50 × 10−4 0.120 [71,72]
COL6A2 Collagen Type VI Alpha 2 Chain chr20:12436782-12464512 0.859 1.05 × 10−3 0.127 [73]
COL9A2 Collagen Type IX Alpha 2 Chain chr5:141623364-141640224 0.770 1.15 × 10−3 0.137 [74]

NID2 nidogen-2 chr15:4801182-4856895 0.769 1.40 × 10−3 0.163 [75,76]
F5 Coagulation Factor V chr13:79934955-79997282 0.745 1.50 × 10−3 0.171 [77]

SNED1 Sushi, Nidogen, and EGF-Like
Domains 1 chr9:92509498-92568597 0.672 1.65 × 10−3 0.181 [78]

COLEC12 Collectin Subfamily Member 12 chr18:996296-1188288 0.951 1.80 × 10−3 0.192 [79]
COL1A2 Collagen Type I Alpha 2 Chain chr4:29393502-29429101 1.066 2.60 × 10−3 0.264 [80]

SLC16A12 Solute Carrier Family 16
Member 12 chr1:238643039-238665699 0.962 2.85 × 10−3 0.281 [81]

CLDN19 Claudin 19 chr5:139838013-139842711 0.896 5.80 × 10−3 0.480 [82]
MYO5C Myosin VC chr8:80042255-80118773 0.921 5.85 × 10−3 0.481 [83]
PMEL Premelanosome Protein chr7:2007881-2045336 1.294 1.40 × 10−2 0.941 [84]

Table 2. Down-regulated genes in NK-5962-treated retinas.

Gene Name Description Locus Log2(Fold_Change) p_Value q_Value Reference

LYVE1
Lymphatic Vessel

Endothelial Hyaluronan
Receptor 1

chr1:168601459-168622234 −1.001 1.58 × 10−2 0.999 [85]

2.2. Bioinformatics Analysis of DEGs in the Eyes Injected with NK-5962

The functional annotation and pathway enrichment analysis of 55 up-regulated DEGs
(Table 1) were explored by using GO terms, KEGG pathway, and Reactome pathway
analyses in the Metascape database (Figure 3A,B). All GO terms and pathways can be seen
online (See Supplementary Table S1 online). Then, we checked the relevant literature to
find GO terms and pathways related to anti-apoptosis in the eyes treated with NK-5962.
As shown in Figure 3A, enrichment analysis by Metascape showed that most of the DEGs
were significantly enriched in the extracellular matrix organization pathway (red box and
Table 3).
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DEGs were significantly enriched in the ECM-receptor interaction and PI3K–Akt signaling 
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(B) Metascape visualization of the interactome network formed by all 55 genes from the Table 1, where the MCODE
compounds are colored according to their identities. The most interesting enriched terms in the category were extracellular
matrix organization (red box).

In addition, the network was visualized by Cytoscape, where each node means an
enriched term. A red box shows extracellular matrix-related pathways and genes, such
as extracellular matrix organization, extracellular structure organization, and external
encapsulating structure organization (Figure 3B, Table 4).

The results of the KEGG pathway analysis (Metascape) showed that the up-regulated
DEGs were significantly enriched in the ECM-receptor interaction and PI3K–Akt signaling
pathway (Table 5).
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Table 3. Top Reactome pathways significantly enriched in DEGs related to anti-apoptosis in NK-5962-treated retinas
(Metascape).

Category Term Description LogP InTerm_
InList Genes

Reactome
Gene Sets

R-RNO-
1474244

Extracellular matrix
organization −18.264 16/198

Serpinh1, Pcolce, Ltbp2, Fbn1,
Col1a2, Col18a1, Col5a1, Vcan,

Fbln2, Col4a1, Nid2, Col8a1, Optc,
Col6a2, Col9a2, Col4a5, Fmod,

Olfml2a, Col9a1, Col4a2, Hspg2,
Fbln1, Abi3bp, Fgfr2

Table 4. Top enriched GO terms significantly enriched in DEGs related to anti-apoptosis in NK-5962-treated
retinas (Metascape).

Category Term Description LogP InTerm_
InList Genes

GO Biological
Processes GO:0030198

extracellular
matrix

organization
−16.615 17/308

Serpinh1,
Fmod, Col1a2, Col18a1, Col5a1,
Fbln2, Col4a1, Olfml2a, Col8a1,
Optc, Col9a1, Col4a2, Hspg2,

Fbln1, Col9a2, Col4a5,
Abi3bp

GO Biological
Processes GO:0043062

extracellular
structure

organization
−16.591 17/309

Serpinh1,
Fmod, Col1a2, Col18a1, Col5a1,
Fbln2, Col4a1, Olfml2a, Col8a1,
Optc, Col9a1, Col4a2, Hspg2,
Fbln1, Col9a2, Col4a5, Abi3bp

GO Biological
Processes GO:0045229

external
encapsulating

structure
organization

−16.567 17/310

Serpinh1,
Fmod, Col1a2, Col18a1, Col5a1,
Fbln2, Col4a1, Olfml2a, Col8a1,
Optc, Col9a1, Col4a2, Hspg2,
Fbln1, Col9a2, Col4a5, Abi3bp

Table 5. Top KEGG pathways significantly enriched in DEGs related to anti-apoptosis in NK-5962-treated
retinas (Metascape).

Category Term Description LogP InTerm_InList Genes

KEGG Pathway ko04512,
rno04512

ECM-receptor
interaction −9.901 8/81

Col1a2, Col4a1, Col9a1,
Col4a2, Hspg2, Col6a2,

Col9a2, Col4a5

KEGG Pathway ko04151,
rno04151

PI3K–Akt signaling
pathway −5.166 8/329

Fgfr2, Col1a2, Col4a1,
Col9a1, Col4a2, Col6a2,

Col9a2, Col4a5

We also uploaded the 55 DEGs (Table 1) into DAVID bioinformation resources for
functional annotation analysis. Based on smaller p values and greater number of genes
contained therein, the up-regulated genes indicated that the proteins of biological process
(BP) were associated with extracellular matrix organization. With regard to the cellular com-
ponent (CC), the majority of proteins contained extracellular exosome (including 31 genes,
p value = 8.19 × 10−13), extracellular space (including 22 genes, p value = 2.30 × 10−11),
and extracellular matrix (including 21 genes, p value = 3.45 × 10−24). With regard to
molecular function (MF), the majority of proteins were involved in processes such as,
extracellular matrix structural constituent (Figure 4A, Table 6).
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Figure 4. Enrichment analysis of top 55 up-regulated genes based on DAVID bioinformation resources. (A) Bubble plot of 
the enriched GO terms: cellular component terms (CC), molecular function terms (MF), biological process terms (BP). The 
first three pathways with the most genes (smaller p value), and which may be related to protection of photoreceptor cells 
are as follows: extracellular exosome, extracellular space, and extracellular matrix (red box). (B) Bubble plot of the enriched 
KEGG pathways. The pathways which may be related to protection of photoreceptor cells are as follows: PI3K–Akt signal-
ing pathway. In addition, there are PI3K–Akt signaling pathway-related pathways: focal adhesion, ECM-receptor interac-
tion (according to the map of PI3K–Akt signaling pathway, https://www.genome.jp/kegg-bin/show_pathway?rno04151 
(accessed on 18 June 2021). The colors of the nodes are illustrated from red to green in descending order of –log10 (p value). 
X-axis: signaling pathway or function; Y-axis: percentage of the number of DEGs assigned to a term among the total num-
ber of DEGs annotated in the network; Bubble size: number of DEGs assigned to a pathway or function; Color: enriched p 
value. 

  

Figure 4. Enrichment analysis of top 55 up-regulated genes based on DAVID bioinformation resources. (A) Bubble plot
of the enriched GO terms: cellular component terms (CC), molecular function terms (MF), biological process terms (BP).
The first three pathways with the most genes (smaller p value), and which may be related to protection of photoreceptor
cells are as follows: extracellular exosome, extracellular space, and extracellular matrix (red box). (B) Bubble plot of the
enriched KEGG pathways. The pathways which may be related to protection of photoreceptor cells are as follows: PI3K–Akt
signaling pathway. In addition, there are PI3K–Akt signaling pathway-related pathways: focal adhesion, ECM-receptor
interaction (according to the map of PI3K–Akt signaling pathway, https://www.genome.jp/kegg-bin/show_pathway?
rno04151 (accessed on 18 June 2021). The colors of the nodes are illustrated from red to green in descending order of
–log10 (p value). X-axis: signaling pathway or function; Y-axis: percentage of the number of DEGs assigned to a term among
the total number of DEGs annotated in the network; Bubble size: number of DEGs assigned to a pathway or function; Color:
enriched p value.

https://www.genome.jp/kegg-bin/show_pathway?rno04151
https://www.genome.jp/kegg-bin/show_pathway?rno04151
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Table 6. Top three GO terms significantly enriched in DEGs related to anti-apoptosis in NK-5962-treated retinas (DAVID).

Category Term Count % p Value Genes

GOTERM_
CC_DIRECT

GO:0070062~
extracellular exosome 31 56.3 8.19 × 10−13

COLEC12, COL18A1, SNED1,
LTBP2, FBLN1, FBLN2, FSTL1,
NID2, AQP1, GJA1, SERPINH1,

SLC13A3, GSTM2, ANXA1,
SERPINF1, SLC6A13, PCOLCE,

SOD3, HSPG2, COL1A2, COL4A2,
COL5A1, COL6A2, OGN, MYO5C,

MXRA8, COL8A1, SLC26A4,
SLC22A8, CRYAB, FBN1

GOTERM_
CC_DIRECT

GO:0005615~
extracellular space 22 40.0 2.30 × 10−11

COL18A1, ANXA1, SERPINF1,
RGD1305645, WFDC1, PCOLCE,

LTBP2, FBLN1, SOD3, FSTL1,
HSPG2, F5, VCAN, COL1A2,

ABI3BP, COL6A2, OGN, SERPINH1,
ENPP2, CPXM1, FMOD, FBN1

GOTERM_
CC_DIRECT

GO:0031012~
extracellular matrix 21 38.1 3.45 × 10−24

COL18A1, SERPINF1, PCOLCE,
LTBP2, FBLN1, SOD3, NID2,

HSPG2, FBLN2, VCAN, COL1A2,
COL4A2, COL5A1, COL4A1,

ABI3BP, COL6A2, OGN, COL8A1,
FMOD, FGFR2, FBN1

Additionally, the up-regulated 55 genes were enriched in five KEGG pathways
(DAVID), including the PI3K–Akt signaling pathway, ECM-receptor interaction, focal
adhesion, protein digestion and absorption, and amoebiasis (Figure 4B, Table 7). The first
three pathways are related to anti-apoptosis mechanisms.

Table 7. Top three KEGG pathways significantly enriched in DEGs related to anti-apoptosis in NK-5962-treated
retinas (DAVID).

Category Term Count % p Value Genes

KEGG_PATHWAY rno04151:PI3K–Akt
signaling pathway 7 12.7 2.76 × 10−4 COL1A2, COL4A2, COL5A1, COL4A1,

COL6A2, COL4A5, FGFR2

KEGG_PATHWAY
rno04512:ECM-

receptor
interaction

6 10.9 4.03 × 10−6 COL1A2, COL4A2, COL5A1, COL4A1,
COL6A2, COL4A5

KEGG_PATHWAY rno04510:Focal
adhesion 6 10.9 2.52 × 10−4 COL1A2, COL4A2, COL5A1, COL4A1,

COL6A2, COL4A5

3. Discussion

This study aimed to investigate the mechanisms of photoelectric dye NK-5962 in
delaying the apoptosis of retinal neurons. We used RCS rats as a retinitis pigmentosa
model, which show progressive photoreceptor degeneration as the consequence of MERTK
mutation in the RPE cells [86]. Our results show that NK-5962 produces an effect on the
expression of a variety of genes. These include genes involved in regulating the PI3K–Akt
signaling pathway and inhibiting the apoptosis of photoreceptor cells in RCS rats.

First, we found that both Metascape and DAVID analyses showed a lot of extracellular
matrix (ECM)-related terms in NK-5962-injected eyes. The ECM of the retina is divided into
two separate entities: the interphotoreceptor matrix (IPM) and the retinal ECM. During
retinal degeneration, the ECM structure is destroyed, leading to an acceleration of the
retinal degeneration process. These changes would lead to an increase in the space between
the cells and a reduction in the ECM materials that were required to support the retina.
In turn, it would change the delivery of oxygen, growth factors, and nutrients from
the retinal supply to the photoreceptor cells [87]. The effectiveness of drug treatment
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would be based on healthy retinal ECM so that neurotrophic factors may play the role in
protecting photoreceptor cells [88]. We speculate that NK-5962 maybe postpone retinal cell
degeneration by up-regulating ECM-related pathways to support the RPE-photoreceptor
microenvironment and to provide an optimal microenvironment for viability of neurons.

Second, the extracellular exosome term that contained the highest number of genes in
GO analysis using DAVID in this study was one of the subtypes of extracellular vesicles
(EVs). EVs can reach injured and degenerative neural cells quickly and transfer biologically
active substances directly into cells [89,90]. The recent research found that inhibited
synthesis of extracellular exosomes leads to exacerbation of retinal degeneration. In mice
that are depleted of extracellular exosomes, inflammation and cell death increases, and
retinal function decreases after photo-oxidative damage occurs [91]. We speculate that the
anti-apoptotic effect of NK-5962 in the retina of RCS may be mediated by extracellular
exosomes, which release neurotrophic factors, lipids, and proteins, including PEDF and
SOD3, promoting the survival of photoreceptors and maintaining the homeostasis of the
retinal microenvironment.

Furthermore, in our study, the PI3K–Akt signaling pathway, focal adhesion pathway,
and ECM-related pathways were up-regulated by NK-5962 in the KEGG pathway analysis
using DAVID. According to the KEGG pathway map of PI3K–Akt signaling pathway–
Norway rats (Rattus norvegicus), NK-5962 maybe activate PI3K–Akt signaling pathway
through focal adhesion and ECM-receptor interaction pathway. Previous reports showed
that PI3K–Akt pathway protected the survival of cone photoreceptors [92]. Additionally,
we noticed that the genes involved in the PI3K–Akt signaling pathway were collagen genes
and the FGFR2 gene (Table 7). The FGFR2 gene is a factor that mediates the rescue of
photoreceptors in the rat and has an effect on anti-apoptotic and neurite repair [93,94].
These results indicate that the delivery of NK-5962 maybe protect photoreceptors from
apoptosis in RCS rat through up-regulated FGFR2 gene by activating the PI3K–Akt signaling
pathway. All of these possibilities need to be clarified through further research.

On the basis of p values and fold change values, the first gene to be noticed is SER-
PINF1, which encodes PEDF. PEDF is a multifunctional protein that has neurotrophic [95]
and antioxidant properties [96] as well as an anti-inflammatory role [97]. PEDF is also
known to protect photoreceptors from injury in rd10 mouse models of retinal degenera-
tion [27,98]. The other reviews showed that molecular pathways of retinal survival activity
triggered by PEDF are involved in PI3K–Akt [99]. The other gene we focused on is SOD3,
which was up-regulated after injection of NK-5962. In recent studies, it has been shown
that SOD3 is important in protecting the ECM from oxidative damage [100]. Whether the
translation of these genes has also been changed remains to be verified.

This study showed the potential mechanism of NK-5962, with a protective effect at
the early stage of photoreceptor degeneration in RCS rats by RNA-seq. In the next step, to
locate the position of up-regulated genes in NK-5962-treated eyes, we will perform RT-PCR
and multicolor immunostaining experiments to screen out important genes.

4. Methods
4.1. Chemicals and Preparations

NK-5962 was obtained from Hayashibara, Inc. (Okayama City, Japan) (Figure 1A),
and was dissolved in distilled deionized water at a concentration of 8.2 µg/mL (16 µM)
(Figure 1B).

4.2. Animals

All experiments were performed in compliance with the ARVO statement for the “Use
of Animals in Ophthalmology and Vision Research” and were approved by the Animal
Care and Use Committee at Okayama University (Identifier OKU-2019196). Eight male
pink-eyed RCS (Jcl-rdy/rdy, p-) rats were obtained from CLEA Japan, Inc. (Tokyo, Japan),
and reared under a 12 h light/dark cycle. All intravitreal injections were performed as
described previously [6]. At the age of 3 and 4 weeks, the rats were anesthetized by
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intraperitoneal injection of ketamine (87 mg/kg body weight, Daiichi Sankyo, Tokyo,
Japan) and xylasine (13 mg/kg, Bayer Japan, Osaka, Japan), and received an intravitreal
injection of 5 µL of NK-5962 solution at 8.2 µg/mL (16 µM) in the left eye, and saline (0.9%
sodium chloride) as a vehicle control in the right eye, with a 30-gauge needle-attached
Hamilton syringe (50 µL 1705 LT SYR; Hamilton Company, Reno, NV, USA) under a
dissecting microscope. All rats were sacrificed at the age of 5 weeks (Figure 1C).

4.3. RNA Extraction

Neural retinal tissue was dissected free from the other tissues of the eye and stored in
an RNAlater RNA Stabilization Reagent (Cat# 74104, Qiagen, Germany). Total RNA was
extracted from the dissected retinal tissue using an RNeasy Mini Kit (Cat# 74104, Qiagen,
Germany) combined with a QIAshredder kit and RNase-free DNase Set (Qiagen) as per
the manufacturer’s instructions.

4.4. RNA Sequencing

Total RNA samples were submitted to Macrogen Japan (Tokyo) and Riken Genesis
(Tokyo) for bioanalyzer quality control analysis (QC), Illumina next-generation sequencing
(NGS), and differential expressed gene (DEG) analysis. All submitted samples had an RNA
integrity number (RIN) > 9 and were proceeded for library construction. The sequencing
library was prepared from poly-A selected RNA from each sample with TruSeq Stranded
mRNA Library Prep Kit (Illumina). On the platform of Novaseq 6000 System (Illumina)
and HiSeq 2500 (Illumina), transcriptome sequencing was performed (100 bp paired-end
sequencing). Adaptor sequences and low-quality bases from paired-reads were removed by
Cutadapt (version 2.4). Filtered paired end reads were mapped to the rat reference genome
(UCSU rn4) by HISAT2 (version 2.1.0), and then transcript assembly was performed
by Cufflinks (v2.1.1) using a previously defined rat gene annotation [101]. Cuffdiff in
the Cufflinks package was used to identify DEGs. RNA-seq was performed on three
independent sample sets, and genes that showed reproducible changes in three experiments
were used for bioinformatics analysis. The p values were calculated by combining the reads
of the three experiments. A cutoff fold-change (FC) ≥ 1.3 and p value < 0.05 were assumed
to identify genes significantly changed by NK-5962 treatment.

4.5. Bioinformatics Analysis

Identified DEGs were uploaded to Metascape (https://metascape.org/, accessed on
8 June 2021), which facilitates comparative analyses of multiple datasets, gene ontology
(GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome
pathway enrichment analyses. The database for Annotation, Visualization, and Inte-
grated Discovery (DAVID, v6.8) bioinformatics tool (https://david.ncifcrf.gov, accessed on
8 June 2021) was also used for validating the results. GO and KEGG bioinformatic analyses
were conducted in R 3.6.3 (https://cran.r-project.org/ (accessed on 28 June 2021). Volcano
plots were created using the R-package ggplot2 (https://cran.r-project.org/ (accessed on
28 June 2021).

4.6. Data Availability

The datasets presented in this study can be found in online repositories. The raw
data obtained in this study are available from DDBJ Read Archive (https://ddbj.nig.ac.jp/
/DRASearch/ (accessed on 9 December 2021) under accession numbers of (DRA013172)
for RNA-seq.

5. Conclusions

We found that NK-5962 up-regulated several genes involved in extracellular matrix
organization, extracellular exosome, and PI3K–Akt signaling pathways in RCS rats. Ad-
ditionally, we observed the up-regulation of PEDF, which has been reported to prevent
photoreceptor cells death. In order to further elucidate the molecular mechanisms of the

https://metascape.org/
https://david.ncifcrf.gov
https://cran.r-project.org/
https://cran.r-project.org/
https://ddbj.nig.ac.jp//DRASearch/
https://ddbj.nig.ac.jp//DRASearch/
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anti-apoptotic properties of NK-5962 in a rat model of RP, more in-depth research is needed.
These are very important for the development of new therapeutic agents for patients with
retinal degenerative diseases.
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