107 research outputs found

    Thermal Detection of Turbulent and Laminar Dissipation in Vortex Front Motion

    Full text link
    We report on direct measurements of the energy dissipated in the spin-up of the superfluid component of 3He-B. A vortex-free sample is prepared in a cylindrical container, where the normal component rotates at constant angular velocity. At a temperature of 0.20Tc, seed vortices are injected into the system using the shear-flow instability at the interface between 3He-B and 3He-A. These vortices interact and create a turbulent burst, which sets a propagating vortex front into motion. In the following process, the free energy stored in the initial vortex-free state is dissipated leading to the emission of thermal excitations, which we observe with a bolometric measurement. We find that the turbulent front contains less than the equilibrium number of vortices and that the superfluid behind the front is partially decoupled from the reference frame of the container. The final equilibrium state is approached in the form of a slow laminar spin-up as demonstrated by the slowly decaying tail of the thermal signal.Comment: 12 pages, 5 figures, to appear in Journal of Low Temperature Physic

    Superfluid vortex front at T -> 0: Decoupling from the reference frame

    Full text link
    Steady-state turbulent motion is created in superfluid 3He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.Comment: 4 pages, 4 figure

    Self-localization of magnon Bose-Einstein condensates in the ground state and on excited levels: from harmonic to box-like trapping potential

    Full text link
    Long-lived coherent spin precession of 3He-B at low temperatures around 0.2 Tc is a manifestation of Bose-Einstein condensation of spin-wave excitations or magnons in a magnetic trap which is formed by the order-parameter texture and can be manipulated experimentally. When the number of magnons increases, the orbital texture reorients under the influence of the spin-orbit interaction and the profile of the trap gradually changes from harmonic to a square well, with walls almost impenetrable to magnons. This is the first experimental example of Bose condensation in a box. By selective rf pumping the trap can be populated with a ground-state condensate or one at any of the excited energy levels. In the latter case the ground state is simultaneously populated by relaxation from the exited level, forming a system of two coexisting condensates.Comment: 4 pages, 5 figure

    Quasiparticle scattering measurements of laminar and turbulent vortex flow in the spin-down of superfluid 3He-B

    Full text link
    The dynamics of quantized vortices is studied in superfluid 3He-B after a rapid stop of rotation. We use Andreev reflection of thermal excitations to monitor vortex motion with quartz tuning fork oscillators in two different experimental setups at temperatures below 0.2Tc. Deviations from ideal cylindrical symmetry in the flow environment cause the early decay to become turbulent. This is identified from a rapid initial overshoot in the vortex density above the value before the spin-down and its subsequent decay with a t^(-3/2) time dependence. The high polarization of the vortices along the rotation axis significantly suppresses the effective turbulent kinematic viscosity below the values reported for more homogeneous turbulence and leads to a laminar late-time response. The vortex dissipation down to T < 0.15Tc is determined from the precession frequency of the polarized vortex configuration. In the limit of vanishing normal component density, the laminar dissipation is found to approach a temperature-independent value, whose origin is currently under discussion.Comment: 8 pages, 5 figure

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Correlating Pedestrian Flows and Search Engine Queries

    Get PDF
    An important challenge for ubiquitous computing is the development of techniques that can characterize a location vis-a-vis the richness and diversity of urban settings. In this paper we report our work on correlating urban pedestrian flows with Google search queries. Using longitudinal data we show pedestrian flows at particular locations can be correlated with the frequency of Google search terms that are semantically relevant to those locations. Our approach can identify relevant content, media, and advertisements for particular locations.Comment: 4 pages, 1 figure, 1 tabl

    Discovering the right place to check-in using web-based proximate selection

    Get PDF
    With information technology becoming increasingly embedded in our everyday physical world, there is a growing set of mobile applications that involve a connection with the digital representation of physical places. This association is normally initiated with a check-in procedure, through which a person asserts her presence at a particular place and determines the context for subsequent interactions. The common assumption is that a mobile application will be able to search the surrounding environment and present the user with the intended check-in target; however, in a world of ubiquitous place-based services, this assumption may no longer hold. A person in an urban environment would, at any moment, be surrounded by a large number of places, all of which could be regarded as possible interaction contexts for that person. In this work, we investigate the real-word challenges associated with wide-scale place selection and how the process can be affected by the place environment, by the position of the person in relation to the target place and by positioning errors. To study this reality, we used Google Places as a directory of georeferenced places. We conducted 14,400 nearby place queries structured around different combinations of our three independent variables. The results suggest that the overall performance is poor, except for low-density scenarios, and that this discovery process, albeit relevant, should always be combined with other place discovery approaches. The results also help to understand how this performance is affected by check-in positions and by the properties of the place environment.- (undefined

    Propagation of thermal excitations in a cluster of vortices in superfluid 3He-B

    Full text link
    We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator in equilibrium rotation at constant angular velocity is measured with two quartz tuning fork oscillators. One oscillator creates a controllable density of excitations at 0.2Tc base temperature and the other records the thermal response. The results are compared to numerical calculations of ballistic propagation of thermal quasiparticles through a cluster of rectilinear vortices.Comment: 6 pages, 4 figure

    Gamification of Mobile Experience Sampling Improves Data Quality and Quantity

    Get PDF
    The Experience Sampling Method is used to capture high-quality in situ data from study participants. This method has become popular in studies involving smartphones, where it is often adapted to motivate participation through the use of gamification techniques. However, no work to date has evaluated whether gamification actually affects the quality and quantity of data collected through Experience Sampling. Our study systematically investigates the effect of gamification on the quantity and quality of experience sampling responses on smartphones. In a field study, we combine event contingent and interval contingent triggers to ask participants to describe their location. Subsequently, participants rate the quality of these entries by playing a game with a purpose. Our results indicate that participants using the gamified version of our ESM software provided significantly higher quality responses, slightly increased their response rate, and provided significantly more data on their own accord. Our findings suggest that gamifying experience sampling can improve data collection and quality in mobile settings
    • …
    corecore