16 research outputs found

    Comparing the performance of various filters on skin cancer images

    Full text link
    © 2014 The Authors. Noise removing from an image is an important task in different applications such as medical which the noise free images could leads to less error detection. Filtering as a tool for noise removal is concerned in this paper. The purpose is to compare the performance of five filters - Median Filter, Adaptive Median Filter, Mean Filter, Gaussian Filter and Adaptive Wiener filter-for de-noising from Gaussian noise, Salt & Pepper noise, Poisson noise and Speckle noise

    The beneficial techniques in preprocessing step of skin cancer detection system comparing

    Full text link
    © 2014 The Authors. Automatic diagnostics of skin cancer is one of the most challenging problems in medical image processing. It helps physicians to decide whether a skin melanoma is benign or malignant. So, determining the more efficient methods of detection to reduce the rate of errors is a vital issue among researchers. Preprocessing is the first stage of detection to improve the quality of images, removing the irrelevant noises and unwanted parts in the background of the skin images. The purpose of this paper is to gather the preprocessing approaches can be used in skin cancer images. This paper provides good starting for researchers in their automatic skin cancer detections

    A binary level set method based on k-Means for contour tracking on skin cancer images

    Full text link
    A great challenge of research and development activities have recently highlighted in segmenting of the skin cancer images. This paper presents a novel algorithm to improve the segmentation results of level set algorithm with skin cancer images. The major contribution of presented algorithm is to simplify skin cancer images for the computer aided object analysis without loss of significant information and to decrease the required computational cost. The presented algorithm uses k-means clustering technique and explores primitive segmentation to get initial label estimation for level set algorithm. The proposed segmentation method provides better segmentation results as compared to standard level set segmentation technique and modified fuzzy cmeans clustering technique

    Review on automatic early skin cancer detection

    Full text link
    Skin cancer is increasing in different countries especially in Australia. Early detection of skin cancer can treat melanoma successfully, therefore, curability and survival depends directly on removing melanoma in its early stages. Since clinical observations face to different fault for melanoma detection, the automatic diagnosis can help to increase the accuracy of detection. Reviewing the researches have done in skin cancer detection and providing the overview on automatic detection of skin cancer are the ultimate aims of this paper. It presents the literature on automatic skin cancer detection and describes the different steps of such process. © 2011 IEEE

    Automated health condition diagnosis of in situ wood utility poles using an intelligent non-destructive evaluation (NDE) framework

    Get PDF
    © 2020 World Scientific Publishing Company. Wood utility poles are widely applied in power transmission and telecommunication systems in Australia. Because of a variety of external influence factors, such as fungi, termite and environmental conditions, failure of poles due to the wood degradation with time is of common occurrence with high degree uncertainty. The pole failure may result in serious consequences including both economic and public safety. Therefore, accurately and timely identifying the health condition of the utility poles is of great significance for economic and safe operation of electricity and communication networks. In this paper, a novel non-destructive evaluation (NDE) framework with advanced signal processing and artificial intelligence (AI) techniques is developed to diagnose the condition of utility pole in field. To begin with, the guided waves (GWs) generated within the pole is measured using multi-sensing technique, avoiding difficult interpretation of various wave modes which cannot be detected by only one sensor. Then, empirical mode decomposition (EMD) and principal component analysis (PCA) are employed to extract and select damage-sensitive features from the captured GW signals. Additionally, the up-to-date machine learning (ML) techniques are adopted to diagnose the health condition of the pole based on selected signal patterns. Eventually, the performance of the developed NDE framework is evaluated using the field testing data from 15 new and 24 decommissioned utility poles at the pole yard in Sydney

    Nonlinear characterization of magnetorheological elastomer-based smart device for structural seismic mitigation

    Get PDF
    Magnetorheological elastomer (MRE) has been demonstrated to be effective in structural vibration control because of controllable stiffness and damping properties with the effect of external magnetic fields. To achieve a high performance of MRE device-based vibration control, a robust and accurate model is necessary to describe nonlinear dynamics of MRE device. This article aims at realising this target via nonlinear modeling of an innovative MRE device, i.e. MRE vibration isolator. First, the field-dependent properties of MRE isolator were analysed based on experimental data of the isolator in various dynamic tests. Then, a phenomenal model was developed to account for these unique characteristics of MRE-based device. Moreover, an improved PSO algorithm was designed to estimate model parameters. Based on identification results, a generalised model was proposed to clarify the field-dependent properties of the isolator due to varied currents, which was then validated by random and earthquake-excited test data. Based on the proposed model, a frequency control strategy was designed for semi-active control of MRE devices-incorporated smart structure for vibration suppression. Finally, using a three-storey frame model and four benchmark earthquakes, a numerical study was conducted to validate the performance of control strategy based on the generalised current-dependent model with satisfactory results

    Pre-processing of automatic skin cancer detection system: Comparative study

    Full text link
    Skin cancer is increasing and effect many people in different part of the world. Malignant melanoma as the deadliest type of skin cancer can be treated successfully if it detected early. Automatic detection is one of the most challenging research areas that can be used for early detection of such vital cancer. Over the last few years, many automatic diagnosis systems been suggested by different researchers targeting increasing of the diagnosis accuracy. This paper presents a quick review on the design of whole system and focus in preprocessing step of the automatic system. Preprocessing as the basis of automation system plays a vital role for accurate detection. This paper implements three techniques of contrast enhancement in the framework of three methodologies to find out the most effective one for further processing. The quality of resulted images in each methodology has been found based on testing the skin cancer images database using three image quality measurements

    Structural damage detection and localization using a hybrid method and artificial intelligence techniques

    Full text link
    © The Author(s) 2019. In this article, an intelligent scheme for structural damage detection and localization is introduced by implementing a hybrid method using the Hilbert–Huang transform and the wavelet transform. First, the second derivatives of the Discrete Laplacian are computed on Hilbert spectrum parameters at each frequency coordinate, and then, in order to highlight the influence of damage on signals, the data are rescaled and weighted with respect to the variance to adjust the differences in amplitude at different scales. Afterwards, the anti-symmetric extension is applied to deal with the boundary distortion phenomenon. A two-dimensional map is created using the multi two-dimensional discrete wavelet transform. This generates the coefficient matrices of level 2 approximation and horizontal, vertical and diagonal details. Horizontal detail coefficients are used to localize damages due to its sensitiveness to any perturbation. Finally, the validity of the algorithm corresponding to various damage states, the single state damage and multiple state damage, is examined through experimental analysis. The results indicate that the proposed framework can effectively localize cracks on concrete and reinforced concrete beams and can provide reliable crack localization in the presence of noise up to 5% more than the expected noise. In addition, the detection problem is mapped to machine learning tasks (support vector machine, k-nearest neighbours and ensemble methods) to automate the damage detection process. The quality of the models is evaluated and validated using the features extracted from the horizontal detail coefficients. The numerical results show that the ensemble models outperform the other models with respect to accuracy, prediction speed and training time

    Automated segmentation of skin lesions: Modified Fuzzy C mean thresholding based level set method

    Full text link
    Accurate segmentation of skin lesion can play a vital role in early detection of skin cancer. Taking the complexity and varieties of skin lesion images into consideration, we propose a new algorithm that combines the advantages of clustering, thresholding and active contour methods currently being used independently for segmentation purposes. A modified Fuzzy C mean thresholding algorithm is applied to initialize level set automatically and also for estimating controlling parameters for level set evolution. The performance of level set segmentation is subject to appropriate initialization, so the proposed initialization method is compared to some other state of the art initialization methods present in literature. The work has been tested on a clinical database of 238 images. Parameters for performance evaluation are presented in detail. Increased true detection rate and reduced false positive and false negative errors confirm the effectiveness of the proposed method for skin cancer detection. © 2013 IEEE
    corecore