170 research outputs found

    Integrated circuit reliability testing

    Get PDF
    A technique is described for use in determining the reliability of microscopic conductors deposited on an uneven surface of an integrated circuit device. A wafer containing integrated circuit chips is formed with a test area having regions of different heights. At the time the conductors are formed on the chip areas of the wafer, an elongated serpentine assay conductor is deposited on the test area so the assay conductor extends over multiple steps between regions of different heights. Also, a first test conductor is deposited in the test area upon a uniform region of first height, and a second test conductor is deposited in the test area upon a uniform region of second height. The occurrence of high resistances at the steps between regions of different height is indicated by deriving the measured length of the serpentine conductor using the resistance measured between the ends of the serpentine conductor, and comparing that to the design length of the serpentine conductor. The percentage by which the measured length exceeds the design length, at which the integrated circuit will be discarded, depends on the required reliability of the integrated circuit

    Information theoretic analysis of LSD scheme

    Get PDF
    In this paper, the capacity region of Low Density Signature Multiple Access Channel (LDS-MAC) is calculated through information theoretic analysis. LDS Code Division Multiple Access (LDS-CDMA) uses spreading sequences of low density for spreading the data symbols in time domain. This technique benefits from a less complex Multiuser Detector (MUD) compared to conventional CDMA with optimum MUD; while keeping the performance close to the single user scenario for up to 200% loaded conditions. Also evaluated is the effect of different factors on the capacity of LDS MAC

    Average energy efficiency contours with multiple decoding policies

    Get PDF
    This letter addresses energy-efficient design in multi-user, single-carrier uplink channels by employing multiple decoding policies. The comparison metric used in this study is based on average energy efficiency contours, where an optimal rate vector is obtained based on four system targets: Maximum energy efficiency, a trade-off between maximum energy efficiency and rate fairness, achieving energy efficiency target with maximum sum-rate and achieving energy efficiency target with fairness. The transmit power function is approximated using Taylor series expansion, with simulation results demonstrating the achievability of the optimal rate vector, and negligible performance difference in employing this approximation

    Integrated circuit reliability testing

    Get PDF
    A technique is described for use in determining the reliability of microscopic conductors deposited on an uneven surface of an integrated circuit device. A wafer containing integrated circuit chips is formed with a test area having regions of different heights. At the time the conductors are formed on the chip areas of the wafer, an elongated serpentine assay conductor is deposited on the test area so the assay conductor extends over multiple steps between regions of different heights. Also, a first test conductor is deposited in the test area upon a uniform region of first height, and a second test conductor is deposited in the test area upon a uniform region of second height. The occurrence of high resistances at the steps between regions of different height is indicated by deriving the measured length of the serpentine conductor using the resistance measured between the ends of the serpentine conductor, and comparing that to the design length of the serpentine conductor. The percentage by which the measured length exceeds the design length, at which the integrated circuit will be discarded, depends on the required reliability of the integrated circuit

    Frequency planning for clustered jointly processed cellular multiple access channel

    Get PDF
    Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems. Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular systems is by considering distributed or clustered jointly processed APs. The authors present a novel `quality of service (QoS) balancing scheme' to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is proposed. For inter site distance (ISD) <; 500 m, results show that with no fairness considered, the upper bound of the capacity region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic frequency planner architecture

    Review on automatic early skin cancer detection

    Full text link
    Skin cancer is increasing in different countries especially in Australia. Early detection of skin cancer can treat melanoma successfully, therefore, curability and survival depends directly on removing melanoma in its early stages. Since clinical observations face to different fault for melanoma detection, the automatic diagnosis can help to increase the accuracy of detection. Reviewing the researches have done in skin cancer detection and providing the overview on automatic detection of skin cancer are the ultimate aims of this paper. It presents the literature on automatic skin cancer detection and describes the different steps of such process. © 2011 IEEE

    Reducing the Peak to Average Power Ratio of LDS-OFDM signals

    Get PDF
    Low Density Signature-Orthogonal Frequency Division Multiplexing (LDS-OFDM) has been introduced recently as an efficient multiple access technique. High Peak to Average Power Ratio (PAPR) is an important obstacle to multicarrier communication systems. This paper concentrates on the PAPR investigation and its reduction for LDS-OFDM signals. Specifically, we will investigate the impact of subcarrier allocation schemes and the phases of the signatures on the PAPR of LDS-OFDM signals. Firstly, the PAPR of LDS-OFDM with conventional signatures is investigated. Then we propose two methods for PAPR reduction; Newman phases and DFT pre-coding. The former method is simple and doesn't imply changes in the system structure while the DFT pre-coding implies a modification in the system. Simulation results show that using Newman phases considerably reduces the PAPR of LDS-OFDM. Further PAPR reduction is achieved using DFT pre-coded LDS-OFDM on the cost of higher complexity

    Average Energy Efficiency Contours with Multiple Decoding Policies

    Full text link

    Integrated Radio Resource Allocation for Multihop Cellular Networks With Fixed Relay Stations

    Full text link
    corecore