3,294 research outputs found

    Accuracy control in ultra-large-scale electronic structure calculation

    Full text link
    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used in Krylov subspace theory, another large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Large-scale electronic-structure theory and nanoscale defects formed in cleavage process of silicon

    Full text link
    Several methods are constructed for large-scale electronic structure calculations. Test calculations are carried out with up to 10^7 atoms. As an application, cleavage process of silicon is investigated by molecular dynamics simulation with 10-nm-scale systems. As well as the elementary formation process of the (111)-(2 x 1) surface, we obtain nanoscale defects, that is, step formation and bending of cleavage path into favorite (experimentally observed) planes. These results are consistent to experiments. Moreover, the simulation result predicts an explicit step structure on the cleaved surface, which shows a bias-dependent STM image.Comment: 4 page 4 figures. A PDF file with better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses

    Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation

    Full text link
    Parallelism of tight-binding molecular dynamics simulations is presented by means of the order-N electronic structure theory with the Wannier states, recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is tested for silicon nanocrystals of more than millions atoms with the transferable tight-binding Hamiltonian. The efficiency of parallelism is perfect, 98.8 %, and the method is the most suitable to parallel computation. The elapse time for a system of 2×1062\times 10^6 atoms is 3.0 minutes by a computer system of 64 processors of SGI Origin 3800. The calculated results are in good agreement with the results of the exact diagonalization, with an error of 2 % for the lattice constant and errors less than 10 % for elastic constants.Comment: 5 pages, 3 figure

    Krylov Subspace Method for Molecular Dynamics Simulation based on Large-Scale Electronic Structure Theory

    Full text link
    For large scale electronic structure calculation, the Krylov subspace method is introduced to calculate the one-body density matrix instead of the eigenstates of given Hamiltonian. This method provides an efficient way to extract the essential character of the Hamiltonian within a limited number of basis set. Its validation is confirmed by the convergence property of the density matrix within the subspace. The following quantities are calculated; energy, force, density of states, and energy spectrum. Molecular dynamics simulation of Si(001) surface reconstruction is examined as an example, and the results reproduce the mechanism of asymmetric surface dimer.Comment: 7 pages, 3 figures; corrected typos; to be published in Journal of the Phys. Soc. of Japa

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Linear Algebraic Calculation of Green's function for Large-Scale Electronic Structure Theory

    Full text link
    A linear algebraic method named the shifted conjugate-orthogonal-conjugate-gradient method is introduced for large-scale electronic structure calculation. The method gives an iterative solver algorithm of the Green's function and the density matrix without calculating eigenstates.The problem is reduced to independent linear equations at many energy points and the calculation is actually carried out only for a single energy point. The method is robust against the round-off error and the calculation can reach the machine accuracy. With the observation of residual vectors, the accuracy can be controlled, microscopically, independently for each element of the Green's function, and dynamically, at each step in dynamical simulations. The method is applied to both semiconductor and metal.Comment: 10 pages, 9 figures. To appear in Phys. Rev. B. A PDF file with better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses

    Dynamical brittle fractures of nanocrystalline silicon using large-scale electronic structure calculations

    Full text link
    A hybrid scheme between large-scale electronic structure calculations is developed and applied to nanocrystalline silicon with more than 105^5 atoms. Dynamical fracture processes are simulated under external loads in the [001] direction. We shows that the fracture propagates anisotropically on the (001) plane and reconstructed surfaces appear with asymmetric dimers. Step structures are formed in larger systems, which is understood as the beginning of a crossover between nanoscale and macroscale samples.Comment: 10 pages, 4 figure

    Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations

    Full text link
    We present a simple and efficient technique in ab initio electronic-structure calculation utilizing real-space double-grid with a high density of grid points in the vicinity of nuclei. This technique promises to greatly reduce the overhead for performing the integrals that involves non-local parts of pseudopotentials, with keeping a high degree of accuracy. Our procedure gives rise to no Pulay forces, unlike other real-space methods using adaptive coordinates. Moreover, we demonstrate the potential power of the method by calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure
    corecore