14 research outputs found

    Influence of implant diameter on surrounding bone

    Full text link
    Objectives : Implant osseointegration is dependent upon various factors, such as bone quality and type of implant surface. It is also subject to adaptation in response to changes in bone metabolism or transmission of masticatory forces. Understanding of long-term physiologic adjustment is critical to prevention of potential loss of osseointegration, especially because excessive occlusal forces lead to failure. To address this issue, wide-diameter implants were introduced in part with the hope that greater total implant surface would offer mechanical resistance. Yet, there is little evidence that variation in diameter translates into a different bone response in the implant vicinity. Therefore, this study aimed at comparing the impact of implant diameter on surrounding bone. Material and methods : Twenty standard (3.75 mm) and 20 wide (5 mm) implants were placed using an animal model. Histomorphometry was performed to establish initial bone density (IBD), bone to implant contact (BIC) and adjacent bone density (ABD). Results : BIC was 71% and 73%, whereas ABD was 65% and 52%, for standard and wide implants, respectively. These differences were not statistically different ( P >0.05). Correlation with IBD was then investigated. BIC was not correlated with IBD. ABD was not correlated to IBD for standard implants ( r 2 =0.126), but it was correlated with wide implants ( r 2 =0.82). In addition, a 1 : 1 ratio between IBD and ABD was found for wide implants. It can be concluded, within the limits of this study, that ABD may be influenced by implant diameter, perhaps due to differences in force dissipation. To cite this article: Brink J, Meraw SJ, Sarment DP. Influence of implant diameter on surrounding bone. Clin. Oral Impl. Res. 18 , 2007; 563–568 doi: 10.1111/j.1600-0501.2007.01283.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75089/1/j.1600-0501.2007.01283.x.pd

    Sem and Fractography Analysis of Screw Thread Loosening in Dental Implants

    No full text
    Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening
    corecore