3 research outputs found

    The pro-apoptosis effects of Echinacea purpurea and Cannabis sativa extracts in human lung cancer cells through caspase-dependent pathway

    Get PDF
    Background: Considering the advantages of using medicinal herbs as supplementary treatments to sensitize conventional anti-cancer drugs, studying functional mechanisms and regulatory effects of Echinacea purpurea (as a non-cannabinoid plant) and Cannabis sativa (as a cannabinoid plant) are timely and required. The potential effects of such herbs on lung cancer cell growth, apoptosis, cell cycle distribution, cellular reactive oxygen species (ROS) level, caspase activity and their cannabinomimetic properties on the CB2 receptor are addressed in the current study. Methods: The cytotoxic effect of both herb extracts on the growth of lung cancer cells (A549) was assessed using the MTT assay. The annexin-V-FITC staining and propidium iodide (PI) staining methods were applied for the detection of apoptosis and cell cycle distribution using flow cytometry. The cellular level of ROS was measured using 7�-dichlorofluorescin diacetate (DCFH-DA) as a fluorescent probe in flow cytometry. The caspase 3 activity was assessed using a colorimetric assay Kit. Results: Echinacea purpurea (EP) root extract induced a considerable decrease in A549 viable cells, showing a time and dose-dependent response. The cell toxicity of EP was accompanied by induction of early apoptosis and cell accumulation at the sub G1 phase of the cell cycle. The elevation of cellular ROS level and caspase 3 activity indicate ROS-induced caspase-dependent apoptosis following the treatment of A549 cells by EP extract. The observed effects of EP extract on A549 growth and death were abrogated following blockage of CB2 using AM630, a specific antagonist of the CB2 receptor. Increasing concentrations of Cannabis sativa (CS) induced A549 cell death in a time-dependent manner, followed by induction of early apoptosis, cell cycle arrest at sub G1 phase, elevation of ROS level, and activation of caspase 3. The CB2 blockage caused attenuation of CS effects on A549 cell death which revealed consistency with the effects of EP extract on A549 cells. Conclusions: The pro-apoptotic effects of EP and CS extracts on A549 cells and their possible regulatory role of CB2 activity might be attributed to metabolites of both herbs. These effects deserve receiving more attention as alternative anti-cancer agents. Graphical abstract: Figure not available: see fulltext. © 2021, The Author(s)

    The local and circulating SOX9 as a potential biomarker for the diagnosis of primary bone cancer

    Get PDF
    Purpose: The status of the local and circulating SOX9, a master regulator of the tumor fate, and its relevance to tumor types, severity, invasion feature, response to therapy, and chemotherapy treatment were surveyed in bone cancer in the current study. Methods: The SOX9 expression level was evaluated in tissue and peripheral blood mononuclear cells from patients with different types of malignant and benign bone tumors also tumor margin tissues using Real-Time PCR. The protein level of SOX9 was assessed using immunohistochemistry and western blot analysis. Also, the correlations of the SOX9 expression level with the patient's clinical and pathological features were considered. Results: The remarkable overexpression of SOX9 was detected in bone tumors compared to tumor margin tissues (P < 0.0001). Malignant bone tumors revealed a higher expression of SOX9 compared to benign tumors (P < 0.0001) while osteosarcoma tumors showed higher expression levels compared to Ewing sarcoma, and chondrosarcoma. Overexpression of SOX9 was observed in high grade, metastatic, recurrent tumors also tumors with poor response to therapy. Besides, the patients under the chemotherapy treatment demonstrated higher levels of SOX9 compared to the rest of malignant tumors (P = 0.02). The simultaneous up-regulation of circulating SOX9 in the patients with bone cancer was observed compared to healthy individuals (P < 0.0001) accompanying with overexpression of SOX9 in malignant tumors compared to benign tumors (P < 0.0001). The circulating SOX9 expression was up-regulated in the patients with malignant bone tumors who receive chemotherapy treatment also patients with high grade, metastatic, recurrent tumors. The protein level of SOX9 was in line with our data on the SOX9 gene expression. Conclusion: The simultaneous overexpression of local and circulating SOX9 in bone cancer besides its positive correlation with tumor severity, malignancy, size, and chemotherapy may deserve receiving more attention in bone cancer diagnosis and therapy. © 2020 The Author
    corecore