6 research outputs found
Attenuation of rotenone-induced mitochondrial oxidative damage and neurotoxicty in drosophila melanogaster supplemented with creatine
Creatine (Cr), an ergogenic nutritional supplement is demonstrated to possess bioenergetic, anti-excitotoxic and antioxidant properties. This study investigated the neuroprotective effects of Cr against rotenone induced oxidative stress, mortality and neurotoxicty in Drosophila melanogaster. We found significant diminution in the endogenous levels of oxidative markers in whole body homogenates of flies exposed to Cr (2-10 mM). Cr supplementation resulted in reduced mortality in flies exposed to rotenone (500 mu M) and better performance in a negative geotaxis assay. Further Cr (10 mM) markedly offset rotenone induced mitochondrial oxidative stress, completely restored the GSH levels, nitric oxide levels, activity of Mn-SOD and dopamine depletion. In an oxidative stress bioassay, flies given Cr prophylaxis exhibited marked resistance to paraquat exposure. These data allow us to hypothesize that the neuroprotective action of Cr in Drosophila may be related to its direct antioxidant activity and ability to abrogate rotenone induced mitochondrial oxidative stress
Differential susceptibility of a few members of nasuta-albomicans complex of drosophila to paraquat-induced lethality and oxidative stress
The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta-albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay