5,029 research outputs found

    Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    Get PDF
    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces

    Approximate resonance states in the semigroup decomposition of resonance evolution

    Full text link
    The semigroup decomposition formalism makes use of the functional model for C.0C_{.0} class contractive semigroups for the description of the time evolution of resonances. For a given scattering problem the formalism allows for the association of a definite Hilbert space state with a scattering resonance. This state defines a decomposition of matrix elements of the evolution into a term evolving according to a semigroup law and a background term. We discuss the case of multiple resonances and give a bound on the size of the background term. As an example we treat a simple problem of scattering from a square barrier potential on the half-line.Comment: LaTex 22 pages 3 figure

    Galilean limit of equilibrium relativistic mass distribution for indistinguishable events

    Full text link
    The relativistic distribution for indistinguishable events is considered in the mass-shell limit m2M2,m^2\cong M^2, where MM is a given intrinsic property of the events. The characteristic thermodynamic quantities are calculated and subject to the zero-mass and the high-temperature limits. The results are shown to be in agreement with the corresponding expressions of an on-mass-shell relativistic kinetic theory. The Galilean limit c,c\rightarrow \infty , which coincides in form with the low-temperature limit, is considered. The theory is shown to pass over to a nonrelativistic statistical mechanics of indistinguishable particles.Comment: Report TAUP-2136-9

    Equilibrium Relativistic Mass Distribution for Indistinguishable Events

    Full text link
    A manifestly covariant relativistic statistical mechanics of the system of NN indistinguishable events with motion in space-time parametrized by an invariant ``historical time'' τ\tau is considered. The relativistic mass distribution for such a system is obtained from the equilibrium solution of the generalized relativistic Boltzmann equation by integration over angular and hyperbolic angular variables. All the characteristic averages are calculated. Expressions for the pressure and the density of events are found and the relativistic equation of state is obtained. The Galilean limit is considered; the theory is shown to pass over to the usual nonrelativistic statistical mechanics of indistinguishable particles.Comment: TAUP-2115-9

    Covariant Equilibrium Statistical Mechanics

    Full text link
    A manifest covariant equilibrium statistical mechanics is constructed starting with a 8N dimensional extended phase space which is reduced to the 6N physical degrees of freedom using the Poincare-invariant constrained Hamiltonian dynamics describing the micro-dynamics of the system. The reduction of the extended phase space is initiated forcing the particles on energy shell and fixing their individual time coordinates with help of invariant time constraints. The Liouville equation and the equilibrium condition are formulated in respect to the scalar global evolution parameter which is introduced by the time fixation conditions. The applicability of the developed approach is shown for both, the perfect gas as well as the real gas. As a simple application the canonical partition integral of the monatomic perfect gas is calculated and compared with other approaches. Furthermore, thermodynamical quantities are derived. All considerations are shrinked on the classical Boltzmann gas composed of massive particles and hence quantum effects are discarded.Comment: 22 pages, 1 figur

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by μm2M/μK,\mu \leq m\leq 2M/\mu _K, where μ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and μK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential μ,\mu , the mass spectrum is shown to be bounded by μm2M/μK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/μK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    On the Resolution of Time Problem in Quantum Gravity Induced from Unconstrained Membranes

    Get PDF
    The relativistic theory of unconstrained pp-dimensional membranes (pp-branes) is further developed and then applied to the embedding model of induced gravity. Space-time is considered as a 4-dimensional unconstrained membrane evolving in an NN-dimensional embedding space. The parameter of evolution or the evolution time τ\tau is a distinct concept from the coordinate time t=x0t = x^0. Quantization of the theory is also discussed. A covariant functional Schr\" odinger equations has a solution for the wave functional such that it is sharply localized in a certain subspace PP of space-time, and much less sharply localized (though still localized) outside PP. With the passage of evolution the region PP moves forward in space-time. Such a solution we interpret as incorporating two seemingly contradictory observations: (i) experiments clearly indicate that space-time is a continuum in which events are existing; (ii) not the whole 4-dimensional space-time, but only a 3-dimensional section which moves forward in time is accessible to our immediate experience. The notorious problem of time is thus resolved in our approach to quantum gravity. Finally we include sources into our unconstrained embedding model. Possible sources are unconstrained worldlines which are free from the well known problem concerning the Maxwell fields generated by charged unconstrained point particles.Comment: 22 Page
    corecore