5,064 research outputs found
Hypercomplex quantum mechanics
The fundamental axioms of the quantum theory do not explicitly identify the
algebraic structure of the linear space for which orthogonal subspaces
correspond to the propositions (equivalence classes of physical questions). The
projective geometry of the weakly modular orthocomplemented lattice of
propositions may be imbedded in a complex Hilbert space; this is the structure
which has traditionally been used. This paper reviews some work which has been
devoted to generalizing the target space of this imbedding to Hilbert modules
of a more general type. In particular, detailed discussion is given of the
simplest generalization of the complex Hilbert space, that of the quaternion
Hilbert module.Comment: Plain Tex, 11 page
Estimating proportions of objects from multispectral scanner data
Progress is reported in developing and testing methods of estimating, from multispectral scanner data, proportions of target classes in a scene when there are a significiant number of boundary pixels. Procedures were developed to exploit: (1) prior information concerning the number of object classes normally occurring in a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two algorithms, LIMMIX and nine-point mixtures, are described along with supporting processing techniques. An important by-product of the procedures, in contrast to the previous method, is that they are often appropriate when the number of spectral bands is small. Preliminary tests on LANDSAT data sets, where target classes were (1) lakes and ponds, and (2) agricultural crops were encouraging
Towards a Realistic Equation of State of Strongly Interacting Matter
We consider a relativistic strongly interacting Bose gas. The interaction is
manifested in the off-shellness of the equilibrium distribution. The equation
of state that we obtain for such a gas has the properties of a realistic
equation of state of strongly interacting matter, i.e., at low temperature it
agrees with the one suggested by Shuryak for hadronic matter, while at high
temperature it represents the equation of state of an ideal ultrarelativistic
Stefan-Boltzmann gas, implying a phase transition to an effectively weakly
interacting phase.Comment: LaTeX, figures not include
Equilibrium Relativistic Mass Distribution for Indistinguishable Events
A manifestly covariant relativistic statistical mechanics of the system of
indistinguishable events with motion in space-time parametrized by an
invariant ``historical time'' is considered. The relativistic mass
distribution for such a system is obtained from the equilibrium solution of the
generalized relativistic Boltzmann equation by integration over angular and
hyperbolic angular variables. All the characteristic averages are calculated.
Expressions for the pressure and the density of events are found and the
relativistic equation of state is obtained. The Galilean limit is considered;
the theory is shown to pass over to the usual nonrelativistic statistical
mechanics of indistinguishable particles.Comment: TAUP-2115-9
Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling
We establish the relation between the Wigner-Weisskopf theory for the
description of an unstable system and the theory of coupling to an environment.
According to the Wigner-Weisskopf general approach, even within the pole
approximation (neglecting the background contribution) the evolution of a total
system subspace is not an exact semigroup for the multi-channel decay, unless
the projectors into eigesntates of the reduced evolution generator are
orthogonal. In this case these projectors must be evaluated at different pole
locations . Since the orthogonality relation does not
generally hold at different values of , for example, when there is symmetry
breaking, the semigroup evolution is a poor approximation for the multi-channel
decay, even for a very weak coupling. Nevertheless, there exists a possibility
not only to ensure the orthogonality of the projectors regardless the
number of the poles, but also to simultaneously suppress the effect of the
background contribution. This possibility arises when the theory is generalized
to take into account interactions with an environment. In this case , and
hence its eigenvectors as well, are {\it independent} of , which corresponds
to a structure of the coupling to the continuum spectrum associated with the
Markovian limit.Comment: 9 pages, 3 figure
Adult Manifestation of Milder Forms of Autism Spectrum Disorder; Autistic and Non-autistic Psychopathology
We compared the presence of autistic and comorbid psychopathology and functional impairments in young adults who received a clinical diagnosis of Pervasive Developmental Disorders Not Otherwise Specified or Asperger's Disorder during childhood to that of a referred comparison group. While the Autism Spectrum Disorder group on average scored higher on a dimensional ASD self- and other-report measure than clinical controls, the majority did not exceed the ASD cutoff according to the Autism Diagnostic Observation Schedule. Part of the individuals with an ASD diagnosis in their youth no longer show behaviors that underscribe a clinical ASD diagnosis in adulthood, but have subtle difficulties in social functioning and a vulnerability for a range of other psychiatric disorders
Gell-Mann--Okubo Mass Formula for an SU(4) Meson Hexadecuplet
Using a linear mass spectrum of an meson hexadecuplet, we derive the
Gell-Mann--Okubo mass formula for the charmed mesons, in good agreement with
experiment. Possible generalization of this method to a higher symmetry group
is briefly discussed.Comment: 11 pages, LaTe
Direct Interactions in Relativistic Statistical Mechanics
Directly interacting particles are considered in the multitime formalism of
predictive relativistic mechanics. When the equations of motion leave a
phase-space volume invariant, it turns out that the phase average of any first
integral, covariantly defined as a flux across a -dimensional surface, is
conserved. The Hamiltonian case is discussed, a class of simple models is
exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page
Global effects in quaternionic quantum field theory
We present some striking global consequences of a model quaternionic quantum
field theory which is locally complex. We show how making the quaternionic
structure a dynamical quantity naturally leads to the prediction of cosmic
strings and non-baryonic hot dark matter candidates.Comment: 11 pages, no figures, revte
Quantum Time and Spatial Localization: An Analysis of the Hegerfeldt Paradox
Two related problems in relativistic quantum mechanics, the apparent
superluminal propagation of initially localized particles and dependence of
spatial localization on the motion of the observer, are analyzed in the context
of Dirac's theory of constraints. A parametrization invariant formulation is
obtained by introducing time and energy operators for the relativistic particle
and then treating the Klein-Gordon equation as a constraint. The standard,
physical Hilbert space is recovered, via integration over proper time, from an
augmented Hilbert space wherein time and energy are dynamical variables. It is
shown that the Newton-Wigner position operator, being in this description a
constant of motion, acts on states in the augmented space. States with strictly
positive energy are non-local in time; consequently, position measurements
receive contributions from states representing the particle's position at many
times. Apparent superluminal propagation is explained by noting that, as the
particle is potentially in the past (or future) of the assumed initial place
and time of localization, it has time to propagate to distant regions without
exceeding the speed of light. An inequality is proven showing the Hegerfeldt
paradox to be completely accounted for by the hypotheses of subluminal
propagation from a set of initial space-time points determined by the quantum
time distribution arising from the positivity of the system's energy. Spatial
localization can nevertheless occur through quantum interference between states
representing the particle at different times. The non-locality of the same
system to a moving observer is due to Lorentz rotation of spatial axes out of
the interference minimum.Comment: This paper is identical to the version appearing in J. Math. Phys.
41; 6093 (Sept. 2000). The published version will be found at
http://ojps.aip.org/jmp/. The paper (40 page PDF file) has been completely
revised since the last posting to this archiv
- …