1,636 research outputs found

    Long spin coherence times in the ground state and an optically excited state of 167^{167}Er3+^{3+}:Y2_2SiO5_5 at zero magnetic field

    Full text link
    Spins in solids are an ideal candidate to act as a memory and interface with superconducting qubits due to their long coherence times. We spectroscopically investigate erbium-167-doped yttrium orthosilicate as a possible microwave-addressed memory employing its microwave frequency transitions that occur without applying an external magnetic field. We obtain coherence times of 380 μ\mus in a ground state spin transition and 1.48 ms in an excited state spin transition. This is 28 times longer compared to previous zero field measurements, as well as 200 times longer than a previous microwave memory demonstration in the same material. These long coherence times show that erbium-167-doped yttrium orthosilicate has potential as a microwave-addressed quantum memory.Comment: 9 pages, 7 figures. The paper has been expanded compared to the previous version on arXiv, and the title has change

    Optically unstable phase from ion-ion interactions in an erbium doped crystal

    Full text link
    We demonstrate an optical unstable phase for a laser driven erbium ion ensemble. The transmitted light through an erbium-doped yttrium orthosillicate crystal becomes dynamically unstable when illuminated by a strong continuous-wave laser. Transient net gain was recorded if the light passes the sample twice. The experimental results are understood in the framework of a many-body system interacting with a classical field, where the ion-ion interaction becomes significant as a result of the high erbium concentration. A Bloch-equation model that includes the excitation-induced frequency-shift is introduced to discuss the conditions of the instabilities.Comment: 5 pages, 4 figure

    Extending Phenomenological Crystal-Field Methods to C1C_1 Point-Group Symmetry: Characterization of the Optically-Excited Hyperfine Structure of 167^{167}Er3+^{3+}:Y2_2SiO5_5

    Full text link
    We show that crystal-field calculations for C1C_1 point-group symmetry are possible, and that such calculations can be performed with sufficient accuracy to have substantial utility for rare-earth based quantum information applications. In particular, we perform crystal-field fitting for a C1_1-symmetry site in 167^{167}Er3+^{3+}:Y2_2SiO5_5. The calculation simultaneously includes site-selective spectroscopic data up to 20,000 cm1^{-1}, rotational Zeeman data, and ground- and excited-state hyperfine structure determined from high-resolution Raman-heterodyne spectroscopy on the 1.5 μ\mum telecom transition. We achieve an agreement of better than 50 MHz for assigned hyperfine transitions. The success of this analysis opens the possibility of systematically evaluating the coherence properties, as well as transition energies and intensities, of any rare-earth ion doped into Y2_2SiO5_5 .Comment: 6 pages, plus 5 pages in supplementary information, 4 figures tota

    Experimental implementation of precisely tailored light-matter interaction via inverse engineering

    Get PDF
    Accurate and efficient quantum control in the presence of constraints and decoherence is a requirement and a challenge in quantum information processing. Shortcuts to adiabaticity, originally proposed to speed up the slow adiabatic process, have nowadays become versatile toolboxes for preparing states or controlling the quantum dynamics. Unique shortcut designs are required for each quantum system with intrinsic physical constraints, imperfections, and noise. Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system. Specifically, the interacting pulses are inversely engineered and further optimized with respect to inhomogeneities of the ensemble and the unwanted interaction with other qubits. We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited-state decay and inhomogeneous broadening. The results presented here are applicable to other noisy intermediate-scale quantum systems.We acknowledge the support from National Natural Science Foundation of China (NSFC) (61505133, 61674112, 62074107); Natural Science Foundation of Jiang Su Province (BK20150308); The International Cooperation and Exchange of the National Natural Science Foundation of China NSFC-STINT (61811530020); S.K. acknowledges the support from the Swedish Research Council (no. 2016-04375, no. 2019-04949), the Knut and Alice Wallenberg Foundation (KAW2016.0081) and Wallenberg Center for Quantum Technology (WACQT) (KAW2017.0449); European Union's Horizon 2020 research and innovation program (712721); NanOQ Tech and the Lund Laser Centre (LLC) through a project grant under the Lund Linneaus environment. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 820391 (SQUARE) and no. 654148 Laserlab-Europe. A.W. acknowledges the support from the Swedish Research Counc[.R. acknowledges the support from the Swedish Research Council (no. 2016-05121). X.C. acknowledges the support by the Spanish Ministry of Science and the European Regional Development Fund through PGC2018-101355-B-I00 (MCIU/AEI/FEDER, UE) and the Basque Government through Grant No. IT986-16, the EU FET Open Grant Quromorphic (Grant No. 828826), and EPIQUS (Grant No. 899368) and the Ramon y Cajal program (Grant No. RYC-2017-22482)

    Strong Purcell enhancement of an optical magnetic dipole transition

    Full text link
    Engineering the local density of states with nanophotonic structures is a powerful tool to control light-matter interactions via the Purcell effect. At optical frequencies, control over the electric field density of states is typically used to couple to and manipulate electric dipole transitions. However, it is also possible to engineer the magnetic density of states to control magnetic dipole transitions. In this work, we experimentally demonstrate the optical magnetic Purcell effect using a single rare earth ion coupled to a nanophotonic cavity. We engineer a new single photon emitter, Er3+^{3+} in MgO, where the electric dipole decay rate is strongly suppressed by the cubic site symmetry, giving rise to a nearly pure magnetic dipole optical transition. This allows the unambiguous determination of a magnetic Purcell factor Pm=1040±30P_m=1040 \pm 30. We further extend this technique to realize a magnetic dipole spin-photon interface, performing optical spin initialization and readout of a single Er3+^{3+} electron spin. This work demonstrates the fundamental equivalence of electric and magnetic density of states engineering, and provides a new tool for controlling light-matter interactions for a broader class of emitters

    Optical coherence properties of Kramers' rare-earth ions at the nanoscale for quantum applications

    Full text link
    Rare-earth (RE) ion doped nano-materials are promising candidates for a range of quantum technology applications. Among RE ions, the so-called Kramers' ions possess spin transitions in the GHz range at low magnetic fields, which allows for high-bandwidth multimode quantum storage, fast qubit operations as well as interfacing with superconducting circuits. They also present relevant optical transitions in the infrared. In particular, Er3+^{3+} has an optical transition in the telecom band, while Nd3+^{3+} presents a high-emission-rate transition close to 890 nm. In this paper, we measure spectroscopic properties that are of relevance to using these materials in quantum technology applications. We find the inhomogeneous linewidth to be 10.7 GHz for Er3+^{3+} and 8.2 GHz for Nd3+^{3+}, and the excited state lifetime T1_1 to be 13.68 ms for Er3+^{3+} and 540 μ\mus for Nd3+^{3+}. We study the dependence of homogeneous linewidth on temperature for both samples, with the narrowest linewidth being 379 kHz (T2_2 = 839 ns) for Er3+^{3+} measured at 3 K, and 62 kHz (T2_2 = 5.14 μ\mus) for Nd3+^{3+} measured at 1.6 K. Further, we investigate time-dependent homogeneous linewidth broadening due to spectral diffusion and the dependence of homogeneous linewidth on magnetic field, in order to get additional clarity of mechanisms that can influence the coherence time. In light of our results, we discuss two applications: single qubit-state readout and a Fourier-limited single photon source.Comment: 9 pages, 5 figure

    Frequency and evolution of sleep-wake disturbances after ischemic stroke: A 2-year prospective study of 437 patients.

    Get PDF
    OBJECTIVE In the absence of systematic and longitudinal data, this study prospectively assessed both frequency and evolution of sleep-wake disturbances (SWD) after stroke. METHODS In 437 consecutively recruited patients with ischemic stroke or transient ischemic attack (TIA), stroke characteristics and outcome were assessed within the 1st week and 3.2 ± 0.3 years (M±SD) after the acute event. SWD were assessed by interview and questionnaires at 1 and 3 months as well as 1 and 2 years after the acute event. Sleep disordered breathing (SDB) was assessed by respirography in the acute phase and repeated in one fifth of the participants 3 months and 1 year later. RESULTS Patients (63.8% male, 87% ischemic stroke and mean age 65.1 ± 13.0 years) presented with mean NIHSS-score of 3.5 ± 4.5 at admission. In the acute phase, respiratory event index was >15/h in 34% and >30/h in 15% of patients. Over the entire observation period, the frequencies of excessive daytime sleepiness (EDS), fatigue and insomnia varied between 10-14%, 22-28% and 20-28%, respectively. Mean insomnia and EDS scores decreased from acute to chronic stroke, whereas restless legs syndrome (RLS) percentages (6-9%) and mean fatigue scores remained similar. Mean self-reported sleep duration was enhanced at acute stroke (month 1: 07:54 ± 01:27h) and decreased at chronic stage (year 2: 07:43 ± 01:20h). CONCLUSIONS This study documents a high frequency of SDB, insomnia, fatigue and a prolonged sleep duration after stroke/TIA, which can persist for years. Considering the negative effects of SWD on physical, brain and mental health these data suggest the need for a systematic assessment and management of post-stroke SWD
    corecore