1 research outputs found

    Nanomaterials: a Map for Their Selection in Food Packaging Applications

    Full text link
    [EN] Even though research on nanotechnology has increased rapidly in the last decades, the application of nanotechnology in food and beverage packaging started to show an interest in the scientific community much more recently. Food safety, quality and improvements of properties compared with conventional materials make nanomaterials very attractive in the field of food and beverage packaging applications. Furthermore, in many cases, nanomaterials are used for both food packaging and the food contained, especially when we talk about nanomaterials for active and intelligent packaging. Oxygen scavengers, antimicrobial nanomaterials and nanobiosensors are some examples of current research efforts on nanomaterials for food packaging. This fact has led to a variety of nanoparticles and nanomaterials. The wide range of existing nanomaterials could make its selection for food packaging applications a challenge. Thus, building up a map based on the current state-of-the-art nanoparticles and nanomaterials is required. Furthermore, there is a need to classify all the nanomaterials used specifically in food packaging, independently of their nature, the packaging material and the way they are integrated to this material. In this paper, a classification of the latest advances in this field was made accompanied by the use of Multi-Criteria Decision Analysis in order to find which are the most relevant (and/or expected to be potentially exploited in the near future) nanomaterials in the area of food packaging. Copyright (c) 2014 John Wiley & Sons, Ltd.The research leading to these results has received funding from the European Union's Seventh Framework Programme managed by the Research Executive Agency http://ec.europa.eu/research/rea (FP7/2007-2013 NMP 2011.1.1-1) under grant agreement no. 280759 Nanobarrier.Sanchez Reig, C.; Dobon Lopez, A.; Hortal Ramos, M.; Cloquell Ballester, VA. (2014). Nanomaterials: a Map for Their Selection in Food Packaging Applications. Packaging Technology and Science. 27(11):839-866. https://doi.org/10.1002/pts.2076S8398662711Platt D The Future of Global Packaging Pira International Ltd 2009Sonkaria, S., Ahn, S.-H., & Khare, V. (2012). Nanotechnology and its Impact on Food and Nutrition: A Review. Recent Patents on Food, Nutrition & Agriculturee, 4(1), 8-18. doi:10.2174/2212798411204010008Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. doi:10.1016/j.progpolymsci.2011.02.003ISO/TS 27687: Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and nanoplate 2008ISO/TS 80004-1: Nanotechnologies -- Vocabulary -- Part 1: Core terms 2010Dobon A NanoSafePack: Development of a best practices guide for the safe handling and use of nanoparticles in packaging industries 2013Bradley, E. L., Castle, L., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, 22(11), 604-610. doi:10.1016/j.tifs.2011.01.002Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. doi:10.1016/j.jcis.2011.07.017Chaudhry, Q., & Castle, L. (2011). Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends in Food Science & Technology, 22(11), 595-603. doi:10.1016/j.tifs.2011.01.001Neethirajan, S., & Jayas, D. S. (2010). Nanotechnology for the Food and Bioprocessing Industries. Food and Bioprocess Technology, 4(1), 39-47. doi:10.1007/s11947-010-0328-2Sekton, B. (2010). Food nanotechnology – an overview. Nanotechnology, Science and Applications, 1. doi:10.2147/nsa.s8677Magnuson, B. A., Jonaitis, T. S., & Card, J. W. (2011). A Brief Review of the Occurrence, Use, and Safety of Food-Related Nanomaterials. Journal of Food Science, 76(6), R126-R133. doi:10.1111/j.1750-3841.2011.02170.xChaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., … Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants: Part A, 25(3), 241-258. doi:10.1080/02652030701744538Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89. doi:10.1016/j.tibtech.2008.10.010Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842. doi:10.1016/j.lwt.2010.01.021Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182. doi:10.1016/j.foodchem.2008.11.047Han, W., Yu, Y., Li, N., & Wang, L. (2011). Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225. doi:10.1007/s11434-010-4326-6Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5), 417. doi:10.1039/b517131hGreijer, H., Karlson, L., Lindquist, S.-E., & Anders Hagfeldt. (2001). Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renewable Energy, 23(1), 27-39. doi:10.1016/s0960-1481(00)00111-7Fthenakis V Kim HC Gualtero S Bourtsalas A Nanomaterials in PV manufacture: Some life cycle environmental- and health-considerations 34th IEEE Photovoltaic Specialists Conference PVSC 2009 002003 002008 10.1109/PVSC.2009.5411495Åžengül, H., & Theis, T. L. (2011). An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. Journal of Cleaner Production, 19(1), 21-31. doi:10.1016/j.jclepro.2010.08.010Lloyd, S. M., & Lave, L. B. (2003). Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles. Environmental Science & Technology, 37(15), 3458-3466. doi:10.1021/es026023qLloyd, S. M., Lave, L. B., & Matthews, H. S. (2005). Life Cycle Benefits of Using Nanotechnology To Stabilize Platinum-Group Metal Particles in Automotive Catalysts. Environmental Science & Technology, 39(5), 1384-1392. doi:10.1021/es049325wRoes, A. L., Marsili, E., Nieuwlaar, E., & Patel, M. K. (2007). Environmental and Cost Assessment of a Polypropylene Nanocomposite. Journal of Polymers and the Environment, 15(3), 212-226. doi:10.1007/s10924-007-0064-5Khanna V Bakshi BR Lee LJ Assessing life cycle environmental implications of polymer nanocomposites 2008 1 6 10.1109/ISEE.2008.4562903Meyer, D. E., Curran, M. A., & Gonzalez, M. A. (2010). An examination of silver nanoparticles in socks using screening-level life cycle assessment. Journal of Nanoparticle Research, 13(1), 147-156. doi:10.1007/s11051-010-0013-4Walser, T., Demou, E., Lang, D. J., & Hellweg, S. (2011). Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts. Environmental Science & Technology, 45(10), 4570-4578. doi:10.1021/es2001248Deorsola, F. A., Russo, N., Blengini, G. A., & Fino, D. (2012). Synthesis, characterization and environmental assessment of nanosized MoS2 particles for lubricants applications. Chemical Engineering Journal, 195-196, 1-6. doi:10.1016/j.cej.2012.04.080Chapter 10: Green Electronics, Chemistry & Materials Nanotechnology 2012: Bio Sensors, Instruments, Medical, Environment and Energy 3 720 723 978-1-4665-6276-9Healy, M. L., Dahlben, L. J., & Isaacs, J. A. (2008). Environmental Assessment of Single-Walled Carbon Nanotube Processes. Journal of Industrial Ecology, 12(3), 376-393. doi:10.1111/j.1530-9290.2008.00058.xSingh, A., Lou, H. H., Pike, R. W., Agboola, A., Li, X., Hopper, J. R., & Yaws, C. L. (2008). Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes. American Journal of Environmental Sciences, 4(5), 522-534. doi:10.3844/ajessp.2008.522.534Bauer, C., Buchgeister, J., Hischier, R., Poganietz, W. R., Schebek, L., & Warsen, J. (2008). Towards a framework for life cycle thinking in the assessment of nanotechnology. Journal of Cleaner Production, 16(8-9), 910-926. doi:10.1016/j.jclepro.2007.04.022Isaacs JA Tanwani A Healy ML Environmental Assessment of SWNT Production Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment 2006 38 41 10.1109/ISEE.2006.1650028Khanna, V., Bakshi, B. R., & Lee, L. J. (2008). Carbon Nanofiber Production. Journal of Industrial Ecology, 12(3), 394-410. doi:10.1111/j.1530-9290.2008.00052.xDobon, A., Cordero, P., Kreft, F., Østergaard, S. R., Robertsson, M., Smolander, M., & Hortal, M. (2011). The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment. The International Journal of Life Cycle Assessment, 16(2), 168-177. doi:10.1007/s11367-011-0257-yRosy Wei Chen, Navin-Chandra, D., & Print, F. B. (1994). A cost-benefit analysis model of product design for recyclability and its application. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 502-507. doi:10.1109/95.335032Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with foodGovernment of Canada Food Packaging Materials Using Nanomaterials http://nanoportal.gc.ca/default.asp?lang=En&n=E90655B6-1U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition Guidance for Industry Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients that are Color Additives 2012Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30-46. doi:10.1016/j.tifs.2011.10.006Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., … Sips, A. J. A. M. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52-62. doi:10.1016/j.yrtph.2008.10.008Hatzigrigoriou, N. B., & Papaspyrides, C. D. (2011). Nanotechnology in plastic food-contact materials. Journal of Applied Polymer Science, 122(6), 3719-3738. doi:10.1002/app.34786Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-2500-1Verghese, K. L., Horne, R., & Carre, A. (2010). PIQET: the design and development of an online ‘streamlined’ LCA tool for sustainable packaging design decision support. The International Journal of Life Cycle Assessment, 15(6), 608-620. doi:10.1007/s11367-010-0193-2Avella, M., Cosco, S., Lorenzo, M. L. D., Pace, E. D., Errico, M. E., & Gentile, G. (2006). iPP Based Nanocomposites Filled with Calcium Carbonate Nanoparticles: Structure/Properties Relationships. Macromolecular Symposia, 234(1), 156-162. doi:10.1002/masy.200650220Avella, M., Bruno, G., Errico, M. E., Gentile, G., Piciocchi, N., Sorrentino, A., & Volpe, M. G. (2007). Innovative packaging for minimally processed fruits. Packaging Technology and Science, 20(5), 325-335. doi:10.1002/pts.761Li, X. H., Tjong, S. C., Meng, Y. Z., & Zhu, Q. (2003). Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites. Journal of Polymer Science Part B: Polymer Physics, 41(15), 1806-1813. doi:10.1002/polb.10546Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch Nanoparticles: A Review. Biomacromolecules, 11(5), 1139-1153. doi:10.1021/bm901428ySanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science & Technology, 21(11), 528-536. doi:10.1016/j.tifs.2010.07.008Andersson, C. (2008). New ways to enhance the functionality of paperboard by surface treatment - a review. Packaging Technology and Science, 21(6), 339-373. doi:10.1002/pts.823EcoSphere Biolatex Binders http://www.ecosynthetix.com/biolatexr-technology/ecospherer/default.aspxRay, S. S., Okamoto, K., Maiti, P., & Okamotoa, M. (2002). New Poly(butylene succinate)/Layered Silicate Nanocomposites: Preparation and Mechanical Properties. Journal of Nanoscience and Nanotechnology, 2(2), 171-176. doi:10.1166/jnn.2002.086Zhijiang, C., & Guang, Y. (2011). Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Materials Letters, 65(2), 182-184. doi:10.1016/j.matlet.2010.09.055Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467-474. doi:10.1016/j.foodchem.2004.10.024Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197. doi:10.1002/masy.200690017Ozkoc, G., & Kemaloglu, S. (2009). Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. Journal of Applied Polymer Science, 114(4), 2481-2487. doi:10.1002/app.30772Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015Rhim, J.-W., & Ng, P. K. W. (2007). Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433. doi:10.1080/10408390600846366Koga S Gas-barrier and moisture resistant paper laminateDallas, P., Sharma, V. K., & Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 166(1-2), 119-135. doi:10.1016/j.cis.2011.05.008Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21(3), 117-128. doi:10.1016/j.tifs.2009.12.006Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3-4), 408-413. doi:10.1016/j.foodcont.2010.09.011Chaudhry, Q., Castle, L., & Watkins, R. (Eds.). (2010). Nanotechnologies in Food. Nanoscience & Nanotechnology Series. doi:10.1039/9781847559883Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology, 10(1), 15. doi:10.1186/1743-8977-10-15Golja V Samardžija Z Dražic G Novak S Presence of nanoparticles in some food contact materials from Slovenian market 5th International Symposium on Food Packaging 2012Cui, Y., Liu, H., Zhou, M., Duan, Y., Li, N., Gong, X., … Hong, F. (2010). Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. Journal of Biomedical Materials Research Part A, 96A(1), 221-229. doi:10.1002/jbm.a.32976Costantino, U., Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2009). New Polymeric Composites Based on Poly(ϵ-caprolactone) and Layered Double Hydroxides Containing Antimicrobial Species. ACS Applied Materials & Interfaces, 1(3), 668-677. doi:10.1021/am8001988Xiao-e, L., Green, A. N. M., Haque, S. A., Mills, A., & Durrant, J. R. (2004). Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 253-259. doi:10.1016/j.nainr.2003.08.010LI, H., LI, F., WANG, L., SHENG, J., XIN, Z., ZHAO, L., … HU, Q. (2009). Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chemistry, 114(2), 547-552. doi:10.1016/j.foodchem.2008.09.085Mills, A., & Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors and Actuators B: Chemical, 136(2), 344-349. doi:10.1016/j.snb.2008.12.048Tarver T Food Nanotechnology 2006 http://www.ift.org/Knowledge-Center/Read-IFT-Publications/Science-Reports/Scientific-Status-Summaries/Editorial/~/media/Knowledge%20Center/Science%20Reports/Scientific%20Status%20Summaries/Editorial/editorial_1106_functionalmaterialinfood.pdfKalia, A., & Parshad, V. R. (2014). Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Critical Reviews in Food Science and Nutrition, 55(2), 159-182. doi:10.1080/10408398.2011.649315Valdés, M. G., Valdés González, A. C., García Calzón, J. A., & Díaz-García, M. E. (2009). Analytical nanotechnology for food analysis. Microchimica Acta, 166(1-2), 1-19. doi:10.1007/s00604-009-0165-zSrinivas, P. R., Philbert, M., Vu, T. Q., Huang, Q., Kokini, J. L., Saos, E., … Ross, S. A. (2009). Nanotechnology Research: Applications in Nutritional Sciences. The Journal of Nutrition, 140(1), 119-124. doi:10.3945/jn.109.115048Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H.-J. (2009). Antimicrobial Efficacy of Zinc Oxide Quantum Dots againstListeria monocytogenes, SalmonellaEnteritidis, andEscherichia coliO157:H7. Journal of Food Science, 74(1), M46-M52. doi:10.1111/j.1750-3841.2008.01013.xLi, X., Lu, Z., & Li, Q. (2013). Multilayered films incorporating CdTe quantum dots with tunable optical properties for antibacterial application. Thin Solid Films, 548, 336-342. doi:10.1016/j.tsf.2013.09.088Regulation (EC) No 1935/2004 of The European Parliament and of The Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EECCommission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with foodU.S. Department of Health and Human Services Food and Drug Administration Office of the Commissioner Draft Guidance for Industry 2011 http://www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htmOffice of Policy Office of the Commissioner U.S. Food and Drug Administration FDA's Approach to Regulation of Nanotechnology Products http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htmHamburg, M. A. (2012). FDA’s Approach to Regulation of Products of Nanotechnology. Science, 336(6079), 299-300. doi:10.1126/science.1205441Bawa, R. (2013). FDA and Nanotech: Baby Steps Lead to Regulatory Uncertainty. Bio-Nanotechnology, 720-732. doi:10.1002/9781118451915.ch41U.S. Food and Drug Administration Inventory of Effective Food Contact Substance (FCS) Notifications http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?filter=&sortColumn=&rpt=fcsListingArreche, R., Blanco, M., Vázquez, P., & Martín-Martínez, J. M. (2012). Use of new silica fillers as additives for polymers used in packaging of fruit. Química Nova, 35(10), 1907-1911. doi:10.1590/s0100-40422012001000003Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52(1-2), 34-40. doi:10.1016/j.clay.2011.01.025Costantino, U., Nocchetti, M., Sisani, M., & Vivani, R. (2009). Recent progress in the synthesis and application of organically modified hydrotalcites. Zeitschrift für Kristallographie, 224(5-6). doi:10.1524/zkri.2009.1153Bugatti, V., Costantino, U., Gorrasi, G., Nocchetti, M., Tammaro, L., & Vittoria, V. (2010). Nano-hybrids incorporation into poly(ε-caprolactone) for multifunctional applications: Mechanical and barrier properties. European Polymer Journal, 46(3), 418-427. doi:10.1016/j.eurpolymj.2009.11.003Longano, D., Ditaranto, N., Cioffi, N., Di Niso, F., Sibillano, T., Ancona, A., … Torsi, L. (2012). Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Analytical and Bioanalytical Chemistry, 403(4), 1179-1186. doi:10.1007/s00216-011-5689-5Rhim, J.-W., Hong, S.-I., Park, H.-M., & Ng, P. K. W. (2006). Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 54(16), 5814-5822. doi:10.1021/jf060658hKenawy, E.-R., Worley, S. D., & Broughton, R. (2007). The Chemistry and Applications of Antimicrobial Polymers:  A State-of-the-Art Review. Biomacromolecules, 8(5), 1359-1384. doi:10.1021/bm061150qDobon, A., Cordero, P., Kreft, F., Østergaard, S. R., Antvorskov, H., Robertsson, M., … Hortal, M. (2011). The sustainability of communicative packaging concepts in the food supply chain. A case study: part 2. Life cycle costing and sustainability assessment. The International Journal of Life Cycle Assessment, 16(6), 537-547. doi:10.1007/s11367-011-0291-
    corecore