751 research outputs found

    Review of Seabird Demographic Rates and Density Dependence. JNCC Report no. 552

    Get PDF
    Introduction This report presents individual species accounts for a selection of British seabirds, sea ducks, divers and grebes. Each account gathers the most up to date published estimates on the following demographic parameters: age-specific survival, age-specific productivity, age of recruitment, incidence of missed breeding, and natal and adult breeding dispersal. Particular attention has been given to regional variation in demographic rates, indicating the extent to which estimates may be applied to other less-well studied colonies. Where possible, the intrinsic and extrinsic factors that influence demographic rates are also detailed. The reported rates should enable population models that assess the impacts of offshore wind farms to be developed as reliably and realistically as possible. Where sufficient data could not be gathered using UK examples, data from colonies outside of the UK have been presented, or a proxy species has been identified. The evidence for density-dependent regulation of seabird demographic rates is also reviewed using examples from the UK, as well as non-UK studies on similar species

    Review of Seabird Demographic Rates and Density Dependence. JNCC Report no. 552

    Get PDF
    Introduction This report presents individual species accounts for a selection of British seabirds, sea ducks, divers and grebes. Each account gathers the most up to date published estimates on the following demographic parameters: age-specific survival, age-specific productivity, age of recruitment, incidence of missed breeding, and natal and adult breeding dispersal. Particular attention has been given to regional variation in demographic rates, indicating the extent to which estimates may be applied to other less-well studied colonies. Where possible, the intrinsic and extrinsic factors that influence demographic rates are also detailed. The reported rates should enable population models that assess the impacts of offshore wind farms to be developed as reliably and realistically as possible. Where sufficient data could not be gathered using UK examples, data from colonies outside of the UK have been presented, or a proxy species has been identified. The evidence for density-dependent regulation of seabird demographic rates is also reviewed using examples from the UK, as well as non-UK studies on similar species

    Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin

    Get PDF
    Intrapopulation variation in resource use occurs in many populations of generalist predators with important community and evolutionary implications. One of the hypothesised mechanisms for such widespread variation is ecological opportunity, i.e. resource availability determined by intrinsic constraints and extrinsic conditions. We combined tracking data and stable isotope analysis to examine how breeding constraints and prey conditions influenced intrapopulation variation in resource use among macaroni penguins Eudyptes chrysolophus. Isotopic variation was also examined as a function of breeding success, individual traits and individual specialisation. Variation in isotope ratios was greatest across multiple tissue types when birds were able to undertake mid-range foraging trips (i.e. during incubation and pre-moult). This variation was highly consistent between years that spanned a 3-fold difference in local krill Euphausia superba density and was also highly consistent at the individual level between 2 years that had similar krill densities. However, by comparing our results with previous work on the same population, it appeared that a decrease in local prey availability can increase intrapopulation variation in resource use during periods with more restricted foraging ranges (i.e. during brood-guard and crèche). This study highlights the importance of considering ecological interactions that operate on multiple spatio-temporal scales when examining the drivers of resource use in populations of generalist predators

    Microplastic exposure increases predictability of predator avoidance strategies in hermit crabs

    Get PDF
    The contamination of natural systems with plastic debris has become one of the most pressing global environmental issues. Microplastics (MPs) are of particular concern because their ubiquity and small size make them available for ingestion by a range of aquatic biota. MP exposure studies are hence proliferating rapidly but are typically limited to the analyses of population-level responses in toxicity endpoints across treatments. Potential contaminant-induced alterations in behavioural patterns, however, could manifest on numerous levels of variation: at the population-level, between individuals and within individuals. Here, we used repeated measures on startle response durations – a risk-avoidance mechanism – in European hermit crabs, Pagurus bernhardus, to measure behavioural responses to MP exposure across multiple levels of variation. We found that MP exposure led to a significant decrease of startle duration at the population-level as well as a reduction of intra-individual variation. In other words, crabs became less risk averse on average and their behaviour became more predictable with increasing MP concentrations. Collectively, our findings indicate that MP pollution might increase susceptibility to predation in hermit crabs

    Temporal change in the contribution of immigration to population growth in a wild seabird experiencing rapid population decline

    Get PDF
    The source–sink paradigm predicts that populations in poorer-quality habitats (‘sinks’) persist due to continued immigration from more-productive areas (‘sources’). However, this categorisation of populations assumes that habitat quality is fixed through time. Globally, we are in an era of wide-spread habitat degradation, and consequently there is a pressing need to examine dispersal dynamics in relation to local population change. We used an integrated population model to quantify immigration dynamics in a long-lived colonial seabird, the black-legged kittiwake Rissa tridactyla, that is classified as globally ‘Vulnerable’. We then used a transient life table response experiment to evaluate the contribution of temporal variation in vital rates, immigration rates and population structure to realised population growth. Finally, we used a simulation analysis to examine the importance of immigration to population dynamics. We show that the contribution of immigration changed as the population declined. This study demonstrates that immigration is unlikely to maintain vulnerable sink populations indefinitely, emphasising the need for temporal analyses of dispersal to identify shifts that may have dramatic consequences for population viability

    Modelling and mapping how common guillemots balance their energy budgets over a full annual cycle

    Get PDF
    The ability of individual animals to balance their energy budgets throughout the annual cycle is important for their survival, reproduction and population dynamics. However, the annual cycles of many wild, mobile animals are difficult to observe and our understanding of how individuals balance their energy budgets throughout the year therefore remains poor. We developed a hierarchical Bayesian state-space model to investigate how key components of animal energy budgets (namely individual energy gain and storage) varied in space and time. Our model used biologger-derived estimates of time-activity budgets, locations and energy expenditure to infer year-round time series of energy income and reserves. The model accounted for seasonality in environmental drivers such as sea surface temperature and daylength, allowing us to identify times and locations of high energy gain. Our study system was a population of common guillemots Uria aalge breeding at a western North Sea colony. These seabirds manage their energy budgets by adjusting their behaviour and accumulating fat reserves. However, typically during severe weather conditions, birds can experience an energy deficit over a sustained period, leading to starvation and large-scale mortality events. We show that guillemot energy gain varied in both time and space. Estimates of guillemot body mass varied throughout the annual cycle and birds periodically experienced losses in mass. Mass losses were likely to have either been adaptive, or due to energetic bottlenecks, the latter leading to increased susceptibility to mortality. Guillemots tended to be lighter towards the edge of their spatial distribution. We describe a framework that combines biologging data, time-activity budget analysis and Bayesian state-space modelling to identify times and locations of high energetic reward or potential energetic bottlenecks in a wild animal population. Our approach can be extended to address ecological and conservation-driven questions that were previously unanswerable due to logistical complexities in collecting data on wild, mobile animals across full annual cycles

    Stochastic Expression of Sae-Dependent Virulence Genes during Staphylococcus aureus Biofilm Development Is Dependent on SaeS

    Get PDF
    The intricate process of biofilm formation in the human pathogen Staphylococcus aureus involves distinct stages during which a complex mixture of matrix molecules is produced and modified throughout the developmental cycle. Early in biofilm development, a subpopulation of cells detaches from its substrate in an event termed “exodus” that is mediated by SaePQRS-dependent stochastic expression of a secreted staphylococcal nuclease, which degrades extracellular DNA within the matrix, causing the release of cells and subsequently allowing for the formation of metabolically heterogenous microcolonies. Since the SaePQRS regulatory system is involved in the transcriptional control of multiple S. aureus virulence factors, the expression of several additional virulence genes was examined within a developing biofilm by introducing fluorescent gene reporter plasmids into wild-type S. aureus and isogenic regulatory mutants and growing these strains in a microfluidic system that supplies the bacteria with a constant flow of media while simultaneously imaging developing biofilms in 5-min intervals. This study demonstrated that multiple virulence genes, including nuc, were expressed stochastically within a specialized subpopulation of cells in nascent biofilms. We demonstrated that virulence genes regulated by SaePQRS were stochastically expressed in nearly all strains examined whereas Agr-regulated genes were expressed more homogenously within maturing microcolonies. The commonly used Newman strain contains a variant of SaeS (SaeSP) that confers constitutive kinase activity to the protein and caused this strain to lack the stochastic expression pattern observed in other strain backgrounds. Importantly, repair of the SaeSP allele resulting in reversion to the well-conserved SaeSL allele found in other strains restored stochastic expression in this strain

    Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus.

    Get PDF
    UNLABELLED: Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. IMPORTANCE: The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillin-resistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings
    corecore