18 research outputs found

    Ena/VASP proteins have an anti-capping independent function in filopodia formation

    Get PDF
    Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 2579-2591, doi:10.1091/mbc.E06-11-0990.Filopodia have been implicated in a number of diverse cellular processes including growth-cone path finding, wound healing, and metastasis. The Ena/VASP family of proteins has emerged as key to filopodia formation but the exact mechanism for how they function has yet to be fully elucidated. Using cell spreading as a model system in combination with small interfering RNA depletion of Capping Protein, we determined that Ena/VASP proteins have a role beyond anticapping activity in filopodia formation. Analysis of mutant Ena/VASP proteins demonstrated that the entire EVH2 domain was the minimal domain required for filopodia formation. Fluorescent recovery after photobleaching data indicate that Ena/VASP proteins rapidly exchange at the leading edge of lamellipodia, whereas virtually no exchange occurred at filopodial tips. Mutation of the G-actin–binding motif (GAB) partially compromised stabilization of Ena/VASP at filopodia tips. These observations led us to propose a model where the EVH2 domain of Ena/VASP induces and maintains clustering of the barbed ends of actin filaments, which putatively corresponds to a transition from lamellipodial to filopodial localization. Furthermore, the EVH1 domain, together with the GAB motif in the EVH2 domain, helps to maintain Ena/VASP at the growing barbed ends.This work was supported in part by National Institutes of Health Grants GM7542201 to D.A.A., GM58801 to F.B.G., and GM62431 to G.G.B. and by Cell Migration Consortium Grants GM64346 to D.A.A and G.G.B

    Umbilical cord cells as a source of cardiovascular tissue engineering

    Full text link
    There is increasing scientific evidence that human umbilical cord cells are a valuable source of adult stem cells that can be used for various implications including regenerative medicine and tissue engineering. The review describes the role of progenitor cells (mesenchymal, endothelial, prenatal) for the use in cardiovascular tissue engineering, i.e., the formation of large vessels and heart valves from umbilical cord cells. Currently used replacements in cardiovascular surgery are made of foreign materials with well known drawbacks such as thrombo-embolic complications, infection, loss of functional and biological properties, and others. Especially in the field of replacements in congenital cardiac defects, there would be a need of materials which have the advantage of optimal biological and mechanical properties. In the case of human umbilical cord cells, autologous cells can be used by minimally invasive procedures. The cells have excellent growth capacities and form a neo-matrix with excellent mechanical properties. For optimal growth and modeling, scaffolds are required with high biocompatibility and biodegradability, which allow cell attachment, ingrowth, and organization. Nutrients and waste must be easily transported and cells should be in entire contact with host's body. Finally, regenerated materials can be fully incorporated and the scaffold is completely replaced. Besides these cell and scaffold requirements, feto-maternal conditions and risk factors concerning deriving stem cells are of major interest. There are still many open questions concerning whether and how maternal conditions such as infection (viral or bacterial) or gestational age of the newborn influence stem cell harvesting and quality. If these cells will be used for the construction of replacement materials, it is clear that very strict criteria and protocols be introduced enabling the promising step from isolated cells to a therapeutic device such as a new heart valve. It is hoped that it will be only a question of time until human umbilical cord cells will be used frequently as the source of cardiovascular tissues among others in the clinical setting of treating congenital heart defects
    corecore