62 research outputs found

    Alkylated albumin-derived dipeptide C(-HETE)P derivatized by propionic anhydride as a biomarker for the verification of poisoning with sulfur mustard

    Get PDF
    Sulfur mustard (SM) is a banned chemical warfare agent recently used in the Syrian Arab Republic conflict causing erythema and blisters characterized by complicated and delayed wound healing. For medical and legal reasons, the proof of exposure to SM is of high toxicological and forensic relevance. SM reacts with endogenous human serum albumin (HSA adducts) alkylating the thiol group of the cysteine residue C34, thus causing the addition of the hydroxyethylthioethyl (HETE) moiety. Following proteolysis with pronase, the biomarker dipeptide C(-HETE)P is produced. To expand the possibilities for verification of exposure, we herein introduce a novel biomarker produced from that alkylated dipeptide by derivatization with propionic anhydride inducing the selective propionylation of the N-terminus yielding PA-C(-HETE)P. Quantitative derivatization is carried out at room temperature in aqueous buffer within 10 s. The biomarker was found to be stable in the autosampler at 15 °C for at least 24 h, thus documenting its suitability even for larger sets of samples. Selective and sensitive detection is done by micro liquid chromatography-electrospray ionization tandem-mass spectrometry (μLC-ESI MS/MS) operating in the selected reaction monitoring (SRM) mode detecting product ions of the single protonated PA-C(-HETE)P (m/z 379.1) at m/z 116.1, m/z 137.0, and m/z 105.0. The lower limit of detection corresponds to 32 nM SM in plasma in vitro and the limit of identification to 160 nM. The applicability to real exposure scenarios was proven by analyzing samples from the Middle East confirming poisoning with SM. Graphical abstractDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Adduct of the blistering warfare agent sesquimustard with human serum albumin and its mass spectrometric identification for biomedical verification of exposure

    Get PDF
    Apart from the well-known sulfur mustard (SM), additional sulfur-containing blistering chemical warfare agents exist. Sesquimustard (Q) is one of them and five times more blistering than SM. It is a common impurity in mustard mixtures and regularly found in old munitions but can also be used in pure form. Compared to the extensive literature on SM, very little experimental data is available on Q and no protein biomarkers of exposure have been reported. We herein report for the first time the adduct of Q with the nucleophilic Cys34 residue of human serum albumin (HSA) formed in vitro and introduce two novel bioanalytical procedures for detection. After proteolysis of this HSA adduct catalyzed either by pronase or by proteinase K, two biomarkers were identified by high-resolution tandem mass spectrometry (MS/HR MS), namely a dipeptide and a tripeptide, both alkylated at their Cys residue, which we refer to as HETETE-CP and HETETE-CPF. HETETE represents the Q-derived thio-alkyl moiety bearing a terminal hydroxyl group: “hydroxyethylthioethylthioethyl.” Targeting both peptide markers from plasma, a micro liquid chromatography–electrospray ionization tandem mass spectrometry method working in the selected reaction monitoring mode (μLC-ESI MS/MS SRM) was developed and validated as well suited for the verification of exposure to Q. Fulfilling the quality criteria defined by the Organisation for the Prohibition of Chemical Weapons, the novel methods enable the detection of exposure to Q alone or in mixtures with SM. We further report on the relative reactivity of Q compared to SM. Based on experiments making use of partially deuterated Q as the alkylating agent, we rule out a major role for six-membered ring sulfonium ions as relevant reactive species in the alkylation of Cys34. Furthermore, the results of molecular dynamics simulations are indicative that the protein environment around Cys34 allows adduct formation with elongated but not bulky molecules such as Q, and identify important hydrogen bonding interactions and hydrophobic contacts. Graphical abstractSanitätsakademie der Bundeswehr (4256)Peer Reviewe

    Alkylation of rabbit muscle creatine kinase surface methionine residues inhibits enzyme activity in vitro

    Get PDF
    Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity

    Transient Receptor Potential Channel A1 (TRPA1) Regulates Sulfur Mustard-Induced Expression of Heat Shock 70 kDa Protein 6 (HSPA6) In Vitro

    Get PDF
    The chemosensory transient receptor potential ankyrin 1 (TRPA1) ion channel perceives different sensory stimuli. It also interacts with reactive exogenous compounds including the chemical warfare agent sulfur mustard (SM). Activation of TRPA1 by SM results in elevation of intracellular calcium levels but the cellular consequences are not understood so far. In the present study we analyzed SM-induced and TRPA1-mediated effects in human TRPA1-overexpressing HEK cells (HEKA1) and human lung epithelial cells (A549) that endogenously exhibit TRPA1. The specific TRPA1 inhibitor AP18 was used to distinguish between SM-induced and TRPA1-mediated or TRPA1-independent effects. Cells were exposed to 600 mu M SM and proteome changes were investigated 24 h afterwards by 2D gel electrophoresis. Protein spots with differential staining levels were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano liquid chromatography electrospray ionization tandem mass spectrometry. Results were verified by RT-qPCR experiments in both HEKA1 or A549 cells. Heat shock 70 kDa protein 6 (HSPA6) was identified as an SM-induced and TRPA1-mediated protein. AP18 pre-treatment diminished the up-regulation. RT-qPCR measurements verified these results and further revealed a time-dependent regulation. Our results demonstrate that SM-mediated activation of TRPA1 influences the protein expression and confirm the important role of TRPA1 ion channels in the molecular toxicology of SM

    Reactivation of Plasma Butyrylcholinesterase by Pralidoxime Chloride in Patients Poisoned by WHO Class II Toxicity Organophosphorus Insecticides

    Get PDF
    Some clinicians assess the efficacy of pralidoxime in organophosphorus (OP) poisoned patients by measuring reactivation of butyrylcholinesterase (BuChE). However, the degree of BuChE inhibition varies by OP insecticide, and it is unclear how well oximes reactivate BuChE in vivo. We aimed to assess the usefulness of BuChE activity to monitor pralidoxime treatment by studying its reactivation after pralidoxime administration to patients with laboratory-proven World Health Organization (WHO) class II OP insecticide poisoning. Patient data were derived from 2 studies, a cohort study (using a bolus treatment of 1g pralidoxime chloride) and a randomized controlled trial (RCT) (comparing 2g pralidoxime over 20min, followed by an infusion of 0.5g/h, with placebo). Two grams of pralidoxime variably reactivated BuChE in patients poisoned by 2 diethyl OP insecticides, chlorpyrifos and quinalphos; however, unlike acetylcholinesterase reactivation, this reactivation was not sustained. It did not reactivate BuChE inhibited by the dimethyl OPs dimethoate or fenthion. The 1-g dose produced no reactivation. Pralidoxime produced variable reactivation of BuChE in WHO class II OP-poisoned patients according to the pralidoxime dose administered, OP ingested, and individual patient. The use of BuChE assays for monitoring the effect of pralidoxime treatment is unlikely to be clinically useful

    Acetilkolinesteraza u eritrocitima i butirilkolinesteraza u plazmi - Važni pokazatelji za liječenje osoba otrovanih organofosfornim spojevima

    Get PDF
    Inhibition of acetylcholinesterase (AChE) is regarded as the primary toxic mechanism of organophosphorus compounds (OP). Therapeutic strategies are directed to antagonise overstimulation of muscarinic receptors with atropine and to reactivate inhibited AChE with oximes. Reactivation is crucial within the neuromuscular synapse, where atropine is ineffective, since peripheral neuromuscular block eventually leads to respiratory failure. Patients with OP intoxication have to be identified as early as possible. During an international NBC-defence exercise anesthetised pigs were poisoned with sarin, followed by treatment with atropine and oxime. Blood samples were drawn and red blood cell (RBC)-AChE activity determined with a fielded test system on-site. Within a few minutes the poisoning was verified. After administration of HI-6, RBC-AChE activity increased rapidly. Blood samples were reanalysed in our laboratory in Munich. Almost identical course of the AChE activities was recorded by both systems. The more comprehensive cholinesterase status was determined in Munich. Oxime administration can be stopped when AChE is aged completely, but has to be continued as long as poison is present in the body and reactivation is possible. To aid the on-site physician in optimising diagnosis and treatment, a fielded test system should be available to allow rapid determination of the complete cholinesterase status.Inhibicija acetilkolinesteraze (AChE) smatra se primarnim mehanizmom toksičnoga djelovanja organofosfornih spojeva (OP). Strategije liječenja idu za zaustavljanjem prekomjerne stimulacije muskarinskih receptora atropinom i reaktiviranjem inhibiranog AChE oksimima. Ključna je reaktivacija u neuromuskularnoj sinapsi, u kojoj atropin nije djelotvoran, budući da neuromuskularna blokada u konačnici vodi do prestanka disanja. Važno je što ranije prepoznati otrovanje organofosfornim spojem. U jednoj međunarodnoj vježbi zaštite od nuklearnog, biološkog i kemijskog napada svinje pod anestezijom otrovane su sarinom te liječene atropinom i oksimom. Uzeti su im uzorci krvi te s pomoću terenskoga testa na licu mjesta određena aktivnost AChE u eritrocitima. Otrovanje je potvrđeno za nekoliko minuta. Nakon primjene HI-6, aktivnost AChE brzo je porasla. Isti su uzorci krvi ponovno analizirani u našem laboratoriju u Münchenu. Oba su testa zabilježila gotovo istovjetan tijek aktivnosti AChE. U Münchenu je međutim napravljen potpuniji nalaz kolinesteraza. Liječenje oksimima može se prekinuti kada AChE potpuno “ostari” (tj. dealkilira), ali ga valja nastaviti dokle god je otrov u tijelu, a reaktivacija moguća. Liječnici na terenu trebali bi raspolagati terenskim testovima radi brzoga i potpunog utvrđivanja statusa kolinesteraza, a time i kvalitetnije dijagnoze

    Organophosphorus compounds and oximes: a critical review

    No full text
    Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame

    In Vitro Interaction of Organophosphono- and Organophosphorothioates with Human Acetylcholinesterase

    No full text
    The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the “classical five”, namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure–activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures
    corecore