688 research outputs found
Effects of spin vacancies on magnetic properties of the Kitaev-Heisenberg model
We study the ground state properties of the Kitaev-Heisenberg model in a
magnetic field and explore the evolution of spin correlations in the presence
of non-magnetic vacancies. By means of exact diagonalizations, the phase
diagram without vacancies is determined as a function of the magnetic field and
the ratio between Kitaev and Heisenberg interactions. We show that in the
(antiferromagnetic) stripe ordered phase the static susceptibility and its
anisotropy can be described by a spin canting mechanism. This accounts as well
for the transition to the polarized phase when including quantum fluctuations
perturbatively. Effects of spin vacancies depend sensitively on the type of the
ground state. In the liquid phase, the magnetization pattern around a single
vacancy in a small field is determined, and its spatial anisotropy is related
to that of non-zero further neighbor correlations induced by the field and/or
Heisenberg interactions. In the stripe phase, the joint effect of a vacancy and
a small field breaks the six-fold symmetry of the model and stabilizes a
particular stripe pattern. Similar symmetry-breaking effects occur even at zero
field due to effective interactions between vacancies. This selection mechanism
and intrinsic randomness of vacancy positions may lead to spin-glass behavior.Comment: 13 pages, 10 figure
Orbital order of spinless fermions near an optical Feshbach resonance
We study the quantum phases of a three-color Hubbard model that arises in the
dynamics of the p-band orbitals of spinless fermions in an optical lattice.
Strong, color-dependent interactions are induced by an optical Feshbach
resonance. Starting from the microscopic scattering properties of ultracold
atoms, we derive the orbital exchange constants at 1/3 filling on the cubic
optical lattice. Using this, we compute the phase diagram in a Gutzwiller
ansatz. We find novel phases with 'axial orbital order' in which pz and px +
ipy (or px - ipy) orbitals alternate.Comment: 4+epsilon pages, 3 figures. Similar to version published in PRA(R
Electron-phonon interaction in the three-band model
We study the half-breathing phonon in the three-band model of a high
temperature superconductor, allowing for vibrations of atoms and resulting
changes of hopping parameters. Two different approaches are compared. From the
three-band model a t-J model with phonons can be derived, and phonon properties
can be calculated. To make contact to density functional calculations, we also
study the three-band model in the Hartree-Fock (HF) approximation. The
paramagnetic HF solution, appropriate for the doped cuprates, has similarities
to the local-density approximation (LDA). However, in contrast to the LDA, the
existence of an antiferromagnetic insulating solution for the undoped system
makes it possible to study the softening of the half-breathing phonon under
doping. We find that although the HF approximation and the t-J model give
similar softenings, these softenings happen in quite different ways. We also
find that the HF approximation gives an incorrect doping and q dependence for
the softening and too small a width for the (half-)breathing phonon.Comment: 7 pages, RevTeX, 4 eps figure
Spin-Orbital Entanglement and Violation of the Goodenough-Kanamori Rules
We point out that large composite spin-orbital fluctuations in Mott
insulators with orbital degeneracy are a manifestation of quantum
entanglement of spin and orbital variables. This results in a dynamical nature
of the spin superexchange interactions, which fluctuate over positive and
negative values, and leads to an apparent violation of the Goodenough-Kanamori
rules. [{\it Published in Phys. Rev. Lett. {\bf 96}, 147205 (2006).}]Comment: 4 pages, 2 figure
Helicoidal magnetic order in a clean copper oxide spin chain compound
We report susceptibility, specific heat, and neutron diffraction measurements
on NaCuO, a spin-1/2 chain compound isostructural to LiCuO,
which has been extensively investigated. Below 13 K, we find a long-range
ordered, incommensurate magnetic helix state with a propagation vector similar
to that of LiCuO. In contrast to the Li analogue, substitutional
disorder is negligible in NaCuO. We can thus rule out that the helix is
induced by impurities, as was claimed on the basis of prior work on
LiCuO. A spin Hamiltonian with frustrated longer-range exchange
interactions provides a good description of both the ordered state and the
paramagnetic susceptibility.Comment: 4 pages, 4 figures Improved Fig.1 and 4. Minor rephrasing. Reference
adde
- …