990 research outputs found

    Magnetic properties of nanoscale compass-Heisenberg planar clusters

    Full text link
    We study a model of spins 1/2 on a square lattice, generalizing the quantum compass model via the addition of perturbing Heisenberg interactions between nearest neighbors, and investigate its phase diagram and magnetic excitations. This model has motivations both from the field of strongly correlated systems with orbital degeneracy and from that of solid-state based devices proposed for quantum computing. We find that the high degeneracy of ground states of the compass model is fragile and changes into twofold degenerate ground states for any finite amplitude of Heisenberg coupling. By computing the spin structure factors of finite clusters with Lanczos diagonalization, we evidence a rich variety of phases characterized by Z2 symmetry, that are either ferromagnetic, C-type antiferromagnetic, or of Neel type, and analyze the effects of quantum fluctuations on phase boundaries. In the ordered phases the anisotropy of compass interactions leads to a finite excitation gap to spin waves. We show that for small nanoscale clusters with large anisotropy gap the lowest excitations are column-flip excitations that emerge due to Heisenberg perturbations from the manifold of degenerate ground states of the compass model. We derive an effective one-dimensional XYZ model which faithfully reproduces the exact structure of these excited states and elucidates their microscopic origin. The low energy column-flip or compass-type excitations are robust against decoherence processes and are therefore well designed for storing information in quantum computing. We also point out that the dipolar interactions between nitrogen-vacancy centers forming a rectangular lattice in a diamond matrix may permit a solid-state realization of the anisotropic compass-Heisenberg model.Comment: 24 pages, 18 figure

    Dimerization versus Orbital Moment Ordering in the Mott insulator YVO3_3

    Full text link
    We use exact diagonalization combined with mean-field theory to investigate the phase diagram of the spin-orbital model for cubic vanadates. The spin-orbit coupling competes with Hund's exchange and triggers a novel phase, with the ordering of t2gt_{2g} orbital magnetic moments stabilized by the tilting of VO6_6 octahedra. It explains qualitatively spin canting and reduction of magnetization observed in YVO3_3. At finite temperature an orbital Peierls instability in the CC-type antiferromagnetic phase induces modulation of magnetic exchange constants even in absence of lattice distortions. The calculated spin structure factor shows a magnon splitting due to the orbital Peierls dimerization.Comment: 4 pages, 5 figures, Revte

    Investigating prenatal perceived support as protective factor against adverse birth outcomes: a community cohort study.

    Get PDF
    Studies show that prenatal maternal anxiety may act as a risk factor for adverse birth outcomes, whilst prenatal social support may rather act as a protective factor. However, studies examining prenatal anxiety symptoms, prenatal perceived support, and neonatal and/or obstetric outcomes are lacking. This study investigated whether, in a community sample, prenatal perceived support: (1) had a protective influence on birth outcomes (gestational age (GA), birthweight (BW), 5-minute Apgar score, and mode of delivery); (2) acted as a protective factor, moderating the relationship between anxiety symptoms and the aforementioned birth outcomes. During their third trimester of pregnancy, 182 nulliparous child-bearers completed standardized questionnaires of anxiety (HADS-A) and perceived support (MOS-SSS). Birth outcomes data was extracted from medical records. (1) Perceived support did not significantly predict any birth outcomes. However, perceived tangible support - MOS-SSS subscale assessing perceived material/financial aid - significantly positively predicted the 5-minute Apgar score. (2) Perceived support did not significantly moderate the relationship between anxiety symptoms and birth outcomes. However, perceived tangible support significantly moderated the relationship between anxiety symptoms and the 5-minute Apgar score. When experienced within non-clinical thresholds, prenatal anxiety symptoms do not increase the risk of adverse neonatal and obstetric outcomes when perceived support is present

    Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase

    Full text link
    We present results of molecular simulations that predict the phases formed by the self-assembly of model nanospheres functionalized with a single polymer "tether", including double gyroid, perforated lamella and crystalline bilayer phases. We show that microphase separation of the immiscible tethers and nanospheres causes confinement of the nanoparticles, which promotes local icosahedral packing that stabilizes the gyroid and perforated lamella phases. We present a new metric for determining the local arrangement of particles based on spherical harmonic "fingerprints", which we use to quantify the extent of icosahedral ordering.Comment: 8 pages, 4 figure

    Dissipationless Spin Current between Two Coupled Ferromagnets

    Full text link
    We demonstrate the general principle which states that a dissipationless spin current flows between two coupled ferromagnets if their magnetic orders are misaligned. This principle applies regardless the two ferromagnets are metallic or insulating, and also generally applies to bulk magnetic insulators. On a phenomenological level, this principle is analogous to Josephson effect, and yields a dissipationless spin current that is independent from scattering. The microscopic mechanisms for the dissipationless spin current depend on the systems, which are elaborated in details. A uniform, static magnetic field is further proposed to be an efficient handle to create the misaligned configuration and stabilize the dissipationless spin current.Comment: 10 pages, 5 figure

    Cluster Property and Robustness of Ground States of Interacting Many Bosons

    Full text link
    We study spatial correlation functions of local operators of interacting many bosons confined in a box of a large, but volume V, for various `ground states' whose energy densities are almost degenerate. The ground states include the coherent state of interacting bosons (CSIB), the number state of interacting bosons (NSIB), and the number-phase squeezed state of interacting bosons, which interpolates between the CSIB and NSIB. It was shown previously that only the CSIB is robust (i.e., does not decohere for a macroscopically long time) against the leakage of bosons into an environment. We show that for the CSIB the spatial correlation of any local operators A(r) and B(r') (which are localized around r and r', respectively) vanishes as |r - r' | \sim V^{1/3} \to \infty, i.e., the CSIB has the `cluster property.' In contrast, the other ground states do not possess the cluster property. Therefore, we have successfully shown that the robust state has the cluster property. This ensures the consistency of the field theory of bosons with macroscopic theories.Comment: We have replaced the manuscript in order to update the reference list and to fix typos. (5 pages, no figures) In the final manuscript, a few sentences have added for more detailed explanation. Journal PDF at http://jpsj.jps.or.jp/journal/JPSJ-71-1.htm

    Heat shock increases the synthesis of the poly(A)-binding protein in HeLa cells.

    Full text link

    Wind and Tide-Induced Hydrodynamics and Sedimentation of Two Tidal Inlets in Western Greece

    Get PDF
    To quantify the detailed mechanisms that cause sedimentation at the tidal inlets in the Messolonghi-Aetoliko lagoonal system, the MIKE 21 FM (HD & ST) numerical simulation models were applied. The study focuses on the hydrodynamic circulation in the vicinity of the tidal inlets and the associated wind and tide-induced currents, as well as sediment transport, bed level evolution and total sediment load accumulation, with emphasis on the vicinity of two tidal inlets, where the problem is more acute. Based on the numerical predictions, which have been qualitatively corroborated via satellite images from Google Earth, it is shown that under the prevailing winds and tidal action, sandbars are formed in front or behind the tidal inlets depending on the wind direction, resulting in a gradual decrease of the mean water level at the mouths. Under the combined action of the tide and the wind the characteristic horizontal structure of the flow includes cyclonic and anti-cyclonic eddies that form at the near tip area of the jetties, which are associated with sediment transport mechanisms
    corecore