15 research outputs found

    Experimental Generation and Manipulation of Quantum Squeezed Vacuum via Polarization Self-Rotation in Rb Vapor

    Get PDF
    Nonclassical states of light are of increasing interest due to their applications in the emerging field of quantum information processing and communication. Squeezed light is such a state of the electromagnetic field in which the quantum noise properties are altered compared with those of coherent light. Squeezed light and squeezed vacuum states are potentially useful for quantum information protocols as well as optical measurements, where sensitivities can be limited by quantum noise. We experimentally study a source of squeezed vacuum resulting from the interaction of near-resonant light with both cold and hot Rb atoms via the nonlinear polarization self-rotation effect (PSR). We investigate the optimal conditions for noise reduction in the resulting squeezed states, reaching quadrature squeezing levels of up to 2.6 dB below shot noise, as well as observing noise reduction for a broad range of detection frequencies, from tens of kHz to several MHz. We use this source of squeezed vacuum at 795 nm to further study the noise properties of these states and how they are affected by resonant atomic interactions. This includes the use of a squeezed light probe to give a quantum enhancement to an optical magnetometer, as well as studying the propagation of squeezed vacuum in an atomic medium under conditions of electromagnetically induced transparency (EIT). We also investigate the propagation of pulses of quantum squeezed light through a dispersive atomic medium, where we examine the possibilities for quantum noise signals traveling at subluminal and superluminal velocities. The interaction of squeezed light with resonant atomic vapors finds various potential applications in both quantum measurements and continuous variable quantum memories

    All-atomic source of squeezed vacuum with full pulse-shape control

    Full text link
    We report on the generation of pulses of a low-frequency squeezed vacuum with noise suppression >2 dB below the standard quantum limit in a hot resonant 87 Rb vapor with polarization self-rotation. We demonstrate the possibility to precisely control the temporal profile of the squeezed noise quadrature by applying a calibrated longitudinal magnetic field, without degrading the maximum amount of squeezing

    Quantum Enhanced Magnetometer with Low-Frequency Squeezing

    Full text link
    We report the demonstration of a magnetometer with noise-floor reduction below the shot-noise level. This magnetometer, based on a nonlinear magneto-optical rotation effect, is enhanced by the injection of a squeezed vacuum state into its input. The noise spectrum shows squeezed noise reduction of about 2 dB spanning from close to 100 Hz to several megahertz. We also report on the observation of two different regimes of operation of such a magnetometer: one in which the detection noise is limited by the quantum noise of the light probe only, and one in which we see additional noise originating from laser noise which is rotated into the vacuum polarization

    Quadrature noise in light propagating through a cold 87Rb atomic gas

    Full text link
    We report on the study of the noise properties of laser light propagating through a cold 87Rb atomic sample held in a magneto-optical trap. The laser is tuned around the Fg = 2 \rightarrow Fe = 1, 2 D1 transitions of 87Rb. We observe quadrature-dependent noise in the light signal, an indication that it may be possible to produce squeezed states of light. We measure the minimum and maximum phase-dependent noise as a function of detuning and compare these results to theoretical predictions to explore the best conditions for light squeezing using cold atomic Rb

    Polarization Self-rotation in Ultracold Atomic Rb

    Full text link
    We report on a combined experimental and theoretical study of polarization self-rotation in an ultracold atomic sample. In the experiments, a probe laser is tuned in the spectral vicinity of the D1 line to observe polarization self-rotation in a sample of ultracold Rb prepared in a magneto-optical trap. Systematic measurements of the rotation angle of the light-polarization ellipse as a function of laser intensity, initial ellipticity and detuning are made. The observations, in good agreement with theoretical simulations, are indicative of the presence of a residual static magnetic field, resulting in measured asymmetries in the rotation angle for right and left ellipticities. In this paper we present our detailed experimental results and analysis of the combined influences of polarization self-rotation and the Faraday effect.Comment: 9 pages, 12 figures Some figures redone for clarity, better explanation for discrepancy of model and experimental dat

    Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    Get PDF
    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (similar to 10-1000 s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO\u27s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F \u3c 3.5 ergs cm(-2) to F \u3c 1200 ergs cm(-2), depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as approximate to 33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10X better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs

    Performance of a prototype atomic clock based on lin||lin coherent population trapping resonances in Rb atomic vapor

    Full text link
    We report on the performance of the first table-top prototype atomic clock based on coherent population trapping (CPT) resonances with parallel linearly polarized optical fields (lin||lin configuration). Our apparatus uses a vertical cavity surface emitting laser (VCSEL) tuned to the D1 line of 87Rb with current modulation at the 87Rb hyperfine frequency. We demonstrate cancellation of the first-order light shift by proper choice of rf modulation power, and further improve our prototype clock stability by optimizing the parameters of the microwave lock loop. Operating in these optimal conditions, we measured a short-term fractional frequency stability (Allan deviation) 2*10^{-11} tau^{-1/2} for observation times 1s<tau< 20s. This value is limited by large VCSEL phase noise and environmental temperature fluctuation. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated lin||lin CPT resonance clock with environmental impacts minimized.Comment: 6 pages, 8 fugure
    corecore