1,019 research outputs found
Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals
A method has been developed to inject mobile charges at the surface of
organic molecular crystals, and the DC transport of field-induced holes has
been measured at the surface of pentacene single crystals. To minimize damage
to the soft and fragile surface, the crystals are attached to a pre-fabricated
substrate which incorporates a gate dielectric (SiO_2) and four probe pads. The
surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm^2/Vs and
is nearly temperature-independent above ~150 K, while it becomes thermally
activated at lower temperatures when the induced charges become localized.
Ruling out the influence of electric contacts and crystal grain boundaries, the
results contribute to the microscopic understanding of trapping and detrapping
mechanisms in organic molecular crystals.Comment: 14 pages, 4 figures. Submitted to J. Appl. Phy
Glass phases of flux lattices in layered superconductors
We study a flux lattice which is parallel to superconducting layers, allowing
for dislocations and for disorder of both short wavelength and long wavelength.
We find that the long wavelength disorder has a significant effect on the phase
diagram -- it produces a first order transition within the Bragg glass phase
and leads to melting at strong disorder. This then allows a Friedel scenario of
2D superconductivity.Comment: 5 pages, 1 eps figure, Revte
Antiferromagnetic domain walls in lightly doped layered cuprates
Recent ESR data shows rotation of the antiferromagnetic (AF) easy axis in
lightly doped layered cuprates upon lowering the temperature. We account for
the ESR data and show that it has significant implications on spin and charge
ordering according to the following scenario: In the high temperature phase AF
domain walls coincide with (110) twin boundaries of an orthorhombic phase. A
magnetic field leads to annihilation of neighboring domain walls resulting in
antiphase boundaries. The latter are spin carriers, form ferromagnetic lines
and may become charged in the doped system. However, hole ordering at low
temperatures favors the (100) orientation, inducing a pi/4 rotation in the AF
easy axis. The latter phase has twin boundaries and AF domain walls in (100)
planes.Comment: 4 pages, 3 figures (1 eps). v2: no change in content, Tex shadow
problem cleare
Zero temperature geometric spin dephasing on a ring in presence of an Ohmic environment
We study zero temperature spin dynamics of a particle confined to a ring in
presence of spin orbit coupling and Ohmic electromagnetic fluctuations. We show
that the dynamics of the angular position are decoupled from the
spin dynamics and that the latter is mapped to certain correlations of a
spinless particle. We find that the spin correlations in the direction
(perpendicular to the ring) are finite at long times, i.e. do not dephase. The
parallel (in plane) components for spin \half do not dephase at weak
dissipation but they probably decay as a power law with time at strong
dissipation.Comment: 5 pages, submitted to EP
Single vortex fluctuations in a superconducting chip as generating dephasing and spin flips in cold atom traps
We study trapping of a cold atom by a single vortex line in an extreme type
II superconducting chip, allowing for pinning and friction. We evaluate the
atom's spin flip rate and its dephasing due to the vortex fluctuations in
equilibrium and find that they decay rapidly when the distance to the vortex
exceeds the magnetic penetration length. We find that there are special spin
orientations, depending on the spin location relative to the vortex, at which
spin dephasing is considerably reduced while perpendicular directions have a
reduced spin flip rate. We also show that the vortex must be perpendicular to
the surface for a general shape vortex.Comment: 6 pages, 4 figure
Second magnetization peak in flux lattices: the decoupling scenario
The second peak phenomena of flux lattices in layered superconductors is
described in terms of a disorder induced layer decoupling transition. For weak
disorder the tilt mudulus undergoes an apparent discontinuity which leads to an
enhanced critical current and reduced domain size in the decoupled phase. The
Josephson plasma frequency is reduced by decoupling and by Josephson glass
pinning; in the liquid phase it varies as 1/[BT(T+T_0)] where T is temperature,
B is field and T_0 is the disorder dependent temperature of the multicritical
point.Comment: 5 pages, 1 eps figure, Revtex. Minor changes, new reference
Decoherence of a particle in a ring
We consider a particle coupled to a dissipative environment and derive a
perturbative formula for the dephasing rate based on the purity of the reduced
probability matrix. We apply this formula to the problem of a particle on a
ring, that interacts with a dirty metal environment. At low but finite
temperatures we find a dephasing rate , and identify dephasing
lengths for large and for small rings. These findings shed light on recent
Monte Carlo data regarding the effective mass of the particle. At zero
temperature we find that spatial fluctuations suppress the possibility of
having a power law decay of coherence.Comment: 5 pages, 1 figure, proofed version to be published in EP
Phase Fluctuations and Vortex Lattice Melting in Triplet Quasi-One-Dimensional Superconductors at High Magnetic Fields
Assuming that the order parameter corresponds to an equal spin triplet
pairing symmetry state, we calculate the effect of phase fluctuations in
quasi-one-dimensional superconductors at high magnetic fields applied along the
y (b') axis. We show that phase fluctuations can destroy the theoretically
predicted triplet reentrant superconducting state, and that they are
responsible for melting the magnetic field induced Josephson vortex lattice
above a magnetic field dependent melting temperature Tm.Comment: 4 pages (double column), 1 eps figur
Decoupling and decommensuration in layered superconductors with columnar defects
We consider layered superconductors with a flux lattice perpendicular to the
layers and random columnar defects parallel to the magnetic field B. We show
that the decoupling transition temperature Td, at which the Josephson coupling
vanishes, is enhanced by columnar defects by an amount ~B^2 relative to Td.
Decoupling by increasing field can be followed by a reentrant recoupling
transition for strong disorder. We also consider a commensurate component of
the columnar density and show that its pinning potential is renormalized to
zero above a critical long wavelength disorder. This decommnesuration
transition may account for a recently observed kink in the melting line.Comment: 5 pages, Revte
- …