10 research outputs found

    The data singular and the data isotropic loci for affine cones

    Get PDF
    \u3cp\u3eThe generic number of critical points of the Euclidean distance function from a data point to a variety is called the Euclidean distance degree (or ED degree). The two special loci of the data points where the number of critical points is smaller than the ED degree are called the Euclidean distance data singular locus and the Euclidean distance data isotropic locus. In this article, we present connections between these two special loci of an affine cone and its dual cone.\u3c/p\u3

    The data singular and the data isotropic loci for affine cones

    No full text
    The generic number of critical points of the Euclidean distance function from a data point to a variety is called the Euclidean distance degree. The two special loci of the data points where the number of critical points is smaller then the ED degree are called the Euclidean Distance Data Singular Locus and the Euclidean Distance Data Isotropic Locus. In this article we present connections between these two special loci of an affine cone and its dual cone

    Tensors of low rank

    No full text

    The average number of critical rank-one approximations to a tensor

    No full text
    \u3cp\u3eMotivated by the many potential applications of low-rank multi-way tensor approximations, we set out to count the rank-one tensors that are critical points of the distance function to a general tensor v. As this count depends on v, we average over v drawn from a Gaussian distribution, and find a formula that relates this average to problems in random matrix theory.\u3c/p\u3

    The average number of critical rank-one approximations to a tensor

    No full text
    Motivated by the many potential applications of low-rank multi-way tensor approximations, we set out to count the rank-one tensors that are critical points of the distance function to a general tensor v. As this count depends on v, we average over v drawn from a Gaussian distribution, and find formulas that relates this average to problems in random matrix theory

    Algebraic boundary of matrices of nonnegative rank at most three

    No full text
    \u3cp\u3eUnderstanding the boundary of the set of matrices of nonnegative rank at most r is important for applications in nonconvex optimization. The Zariski closure of the boundary of the set of matrices of nonnegative rank at most 3 is reducible. We give a minimal generating set for the ideal of each irreducible component. In fact, this generating set is a Gröbner basis with respect to the graded reverse lexicographic order. This solves a conjecture by Robeva, Sturmfels and the last author.\u3c/p\u3

    Orthogonal and unitary tensor decomposition from an algebraic perspective

    No full text
    \u3cp\u3eWhile every matrix admits a singular value decomposition, in which the terms are pairwise orthogonal in a strong sense, higher-order tensors typically do not admit such an orthogonal decomposition. Those that do have attracted attention from theoretical computer science and scientific computing. We complement this existing body of literature with an algebro-geometric analysis of the set of orthogonally decomposable tensors. More specifically, we prove that they form a real-algebraic variety defined by polynomials of degree at most four. The exact degrees, and the corresponding polynomials, are different in each of three times two scenarios: ordinary, symmetric, or alternating tensors; and real-orthogonal versus complex-unitary. A key feature of our approach is a surprising connection between orthogonally decomposable tensors and semisimple algebras—associative in the ordinary and symmetric settings and of compact Lie type in the alternating setting.\u3c/p\u3

    The Euclidean distance degree of an algebraic variety

    No full text
    The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a generic point outside the variety. Focusing on varieties seen in applications, we present numerous tools for exact computations

    The Euclidean distance degree

    No full text
    The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a generic point outside the variety. Focusing on varieties seen in applications, we present numerous tools for computation. Keywords: Nearest point map, Euclidean distance, polynomial optimization, computing critical points, dual variety, Chern clas

    The Euclidean distance degree of an algebraic variety

    Get PDF
    The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low-rank matrices, the Eckart–Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational algebraic geometry. The Euclidean distance degree of a variety is the number of critical points of the squared distance to a general point outside the variety. Focusing on varieties seen in applications, we present numerous tools for exact computations
    corecore