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ABSTRACT

The generic number of critical points of the Euclidean distance function from
a data point to a variety is called the Euclidean distance degree (or ED degree).
The two special loci of the data points where the number of critical points
is smaller than the ED degree are called the Euclidean distance data singular
locus and the Euclidean distance data isotropic locus. In this article, we present
connections between these two special loci of an a�ne cone and its dual cone.
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1. Introduction

Models in science are o�en expressed as real solution sets of systems of polynomial equations, namely
real algebraic varieties. One of the most fundamental optimization problems that can be formulated on
such sets is the following: Given a real algebraic variety and given a general data point of the ambient
space, minimize the Euclidean distance from the given data point to the variety.

To solve this problem algebraically, we examine the critical points of the squared Euclidean distance
function. The number of such critical points is an important complexity parameter for both numerical
and exact algorithms, [5, 13] for �nding the optimal solution to the distance minimization problem and
is called the Euclidean Distance Degree (or ED degree). This optimization problem arises in a wide range
of applications, such as low-rank approximations (Example 8), control theory (Example 10), formation
control (Example 13), algebraic statistics (Example 14), and multiview geometry (Example 15).

For a general data point u, the number of complex critical points is constant, while the number of
real critical points is typically not constant for all general u. For example, if one of the critical points
has a multiplicity, then the number of real critical points typically changes. This locus is called the ED-
discriminant (or classically focal locus) [2, 3, 6, 9, 14].

In this article, we want to discuss the locus (di�erent from the ED discriminant) of exceptional data
points u for which the number of complex critical points is smaller than the ED degree. We consider
three cases in which we can have a di�erent number of critical points than expected. The �rst reason is
because a critical point may wander o� into the singular locus of the variety. The study of this special
locus was proposed by Bernd Sturmfels, �rst examples were developed [4] and it was named ED data
singular locus. In a similar fashion, the second case is when a critical point becomes isotropic with respect
to the Euclidean inner product (i.e., it has norm zero); this locus will be called ED data isotropic locus. In
these two cases, the number of critical points is smaller than the ED degree. Finally, a data point can have
in�nitely many critical points, but this phenomenon is apparently recorded by the ED discriminant, so
we do not deal with it in this article. A classical example would be that there are in�nitely many critical
rank 2 approximations of a matrix with two identical singular values.

CONTACT Emil Horobeţ e.horobet@tue.nl Department of Mathematics and Computer Science, Eindhoven University of
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Color versions of one or more of the �gures in the article can be found online at www.tandfonline.com/lagb.

© 2017 Taylor & Francis

http://dx.doi.org/10.1080/00927872.2016.1172632
mailto:e.horobet@tue.nl
http://www.tandfonline.com/lagb


1178 E. HOROBEŢ

In this article, we aim to describe the data singular and the data isotropic loci of a�ne cones.

2. The special Loci of data points

To �nd the critical points algebraically, we consider X to be a variety in C
n and we examine all complex

critical points of the complexi�ed distance, induced by the standard symmetric bilinear form,

du(x) = (u − x|u − x) =

n
∑

i=1

(ui − xi)
2,

with x ∈ Xreg, where Xreg denotes the locus of regular points of X, so we only allow those critical points
that are nonsingular. Since the ED degree is additive over the components of a variety from now on, we
assume that X ⊆ C

n is an irreducible algebraic variety of codimension c with de�ning radical ideal I. If
x ∈ Xreg is a critical point of du, then the following holds: u − x ⊥ TxX. This latter condition can be
formulated as x ∈ Xreg is a critical point of du if and only if all the (c+1)× (c+1)minors of the matrix:

(

u − x
Jacx(I)

)

vanish, where Jacx(I) is the Jacobian of I at the point x.
We de�ne the ED-correspondence to be the closure of the set of all pairs (u, x), such that x ∈ Xreg is

critical to du, and we denote it by EX ⊆ C
n
u × C

n
x . In other words, EX is the closure of:

{

(u, x)
∣

∣u ∈ C
n, x ∈ Xreg, rank

(

u − x
Jacx(I)

)

≤ c

}

.

We have two natural projection maps π1 : EX → C
n
u sending (u, x) to u and π2 : EX → C

n
x sending

(u, x) to x. Let SingX denotes the singular locus of X, that is, the set of all points of x ∈ X such that all
the c × cminors of Jacx(I) vanish.

So for a given data point u, the cardinality of the �ber of π1 over u, π
−1
1 (u), measures the number of

critical points.
We want to discuss the locus of exceptional data points u at which the number of complex critical

points is di�erent from the ED degree. As mentioned in the introduction, we consider three cases in
which we can have di�erent number of critical points than expected. The �rst one is because a critical
point may wander o� into SingX because of the closure appearing in the de�nition of EX . This locus is
called the ED data singular locus.

2.1. Data singular locus

We use the precise de�nition of the ED data singular locus [4], that is, the Zariski closure of the set:

π1(EX ∩ π−1
2 (SingX)).

We denote the ED data singular locus of an algebraic variety X by DS(X) (abbreviating “data singular"
locus) and we aim to describe the data singular locus of a�ne cones. We de�ne X∗ the dual variety to X
to be the Zariski closure of the set:

{

y ∈ C
n | ∃x ∈ Xreg : y ⊥ TxX

}

.

More precisely, we view X∗ as subset of Cn through the standard symmetric bilinear form on C
n. Our

main result in this section is the following theorem.

Theorem 1. Let X ⊆ C
n be an irreducible a�ne cone that is not a linear space. Then the following two

inclusions hold:

X∗ ⊆(1) DS(X) ⊆(2) X
∗ + SingX.

Proof. First, we prove inclusion (1) for a dense subset of X∗. For this, take u ∈ X∗, such that there exists
a regular point xr ∈ Xreg, such that u ⊥ TxrX, that is, all the (c+ 1)× (c+ 1)minors of

( u
Jacxr (I)

)

vanish,
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where c is the codimension of X and Jacxr (I) is the Jacobian of the (radical) ideal I of X at the point xr .

We denote an arbitrary (c + 1) × (c + 1) minor of this matrix by
( u
Jacxr (I)

)

(c+1)
.

We claim that (u + λxr , λxr) ∈ EX for all real λ ≥ 0. We have that if f ∈ I is homogeneous of degree
d, then ∇f (λx) = λd∇f (x). So if xr is a regular point, then λxr is also regular, for any λ > 0. Moreover,
we get that for any (c + 1) × (c + 1) minor:

(

(u + λxr) − λxr
Jacλxr (I)

)

(c+1)

=

(

u
Jacλxr (I)

)

(c+1)

= λN
(

u
Jacxr (I)

)

(c+1)

= 0,

whereN is the sum of degrees of the de�ning polynomials of I, which appear in the particular (c+ 1) ×

(c + 1) minor.
So (u + λxr , λxr) ∈ EX for all real λ > 0. But then taking the limit when λ goes to zero, we get that

(u, 0) ∈ EX ∩ π−1
2 (SingX),

since EX ∩ π−1
2 (SingX) is Zariski closed (hence closed wrt. Euclidean topology as well) and since 0 ∈

SingX. Indeed, for every x ∈ X, the line {λ·x} is in the tangent space to 0, soT0X is equal to the linear span
of X, which has a greater dimension than X if and only if X is not a linear space, and hence 0 ∈ SingX.
So then u = π1((u, 0)) ∈ DS(X).

For the proof of (2), take an element (u, x0) ∈ EX∩π−1
2 (SingX). Then, this point can be approximated

by a sequence in the part of EX over Xreg. That is, there exists a sequence δi → 0 inCn and xi → x0 with
all the xi ∈ Xreg, such that

(u + δi, xi) ∈ EX .

By the ED Duality Theorem for a�ne cones [3, Theorem 5.2], we get that (u + δi) − xi ∈ X∗, for all i.
Now taking the limit, when i goes to in�nity, we get that u − x0 ∈ X∗, since X∗ is closed (hence closed
wrt. Euclidean topology as well). Finally, this means that u ∈ x0 + X∗ ⊆ SingX + X∗.

Note that the condition in the theorem that X is not a linear space is necessary to prove the theorem.
Otherwise, if X is a linear subspace ofCn, then it has a nonempty dual (its orthogonal complement with
respect to the inner product), but its singular locus is empty, hence its data singular locus is empty as well.

2.2. Data isotropic locus

A second possibility for a data point u to have smaller number of critical points than expected is by letting
one of the critical points become isotropic. Let us denote by Q = {x ∈ C

n :
∑n

i=1 x
2
i = 0} the isotropic

quadric with respect to the standard symmetric bilinear form. Draisma et al. de�ne the ED degree of
a projective variety in P

n−1 to be the ED degree of the corresponding a�ne cone in C
n [3]. Moreover,

given a data point u, the critical points to these two objects are in a one-to-one correspondence, given
that none of the critical points lies in the isotropic quadric [3, Lemma 2.8]. In particular, the role of Q
shows that the computation of ED degree is a metric problem. This is the reason that even though in
the de�nition of the a�ne EX we keep the isotropic critical points, when we pass to projective varieties
we will exclude the isotropic points. This way the data isotropic locus represents the locus of data points
which have a di�erent number of critical points when X is considered as an a�ne cone compared to
when X is considered as a projective variety. More precisely, we de�ne the ED data isotropic locus to be
the Zariski closure of the set:

π1(EX ∩ π−1
2 (Q ∩ X)).

We denote the ED data isotropic locus of an algebraic variety X by DI(X) (abbreviating “data isotropic"
locus). We have the following theorem for the ED data isotropic locus of a�ne cones.

Theorem 2. Let X ⊆ C
n be an irreducible a�ne cone. Then the following two inclusions hold:

X∗ ⊆(1) DI(X) ⊆(2) X
∗ + (Q ∩ X),

where X∗ denotes the dual variety to X.
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Proof. The proof follows the lines of the proof of Theorem 1, keeping in mind that 0 ∈ X is always an
isotropic point.

In the following two sections, we will give examples to show that both inclusions appearing in
Theorems 1 and 2 can be strict and/or equalities.

3. Examples of the ED data singular locus

In this section, we present several useful examples concerning the ED data singular locus of an a�ne
cone. Before we get to the examples, we present how one can computationally determine the objects we
are working with. We illustrate the main algorithms with code in Macaulay2 [7]. For an a�ne cone
X ⊆ C

n, of codimension cwith de�ning radical ideal I, one can determine its dualX∗ using the following
code [12, Algorithm 5.1].

Example 3 (Computing the dual variety). We present the algorithm for the real a�ne cone X ⊆ C
3

de�ned by the homogeneous equation f = x31 + x22x3.

The output reveals that X∗ is the zero locus of the polynomial f ∗ = 4x31 − 27x22x3.

Following the de�nition of the data singular locus, the next example contains an algorithm for
calculating the ideal of it.

Example 4 (Computing the data singular locus). We present the algorithm for the real a�ne cone X ⊆

C
3 de�ned by the homogeneous equation f = x31 + x22x3.

From the output, we see that the data singular locus is the zero set of the polynomial x1(4x
3
1 − 27x22x3).
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Now, we arrived at the point to present a sequence of interesting varieties and the corresponding duals
and data singular loci. The �rst example is the one we used for presenting the algorithms previously. In
this example, both inclusions (1) and (2) are strict, as it will be seen.

Example 5 (Cuspidal cubic cone). Let X⊆C
3 be the real variety de�ned by the homogeneous equation

f = x31 + x22x3. Since it is an a�ne cone, it has a dual X∗, which is de�ned by the dual equation
f ∗ = 4x31 − 27x22x3. For the data singular locus, we get that DS(X) is the zero locus of the polynomial
x1(4x

3
1 − 27x22x3). So we can see that X∗ is even a component of DS(X). Moreover, X∗ + SingX is

something much larger and not equal to DS(X). For example, the point:

(3, 2, 1) + (0, 0, 1) ∈ X∗ + SingX,

but is not on DS(X). Figure 1 shows X in blue and X∗ in green and DS(X) is the union of the green-
colored X∗ and the additional surface in red.

The next example shows that both inclusions (1) and (2) can in fact be equalities. More generally, we
have the following corollary to Theorem 1.

Corollary 6. Let X ⊆ C
n be an a�ne cone, with SingX = {0}, then DS(X) = X∗. Moreover, if X is a

general hypersurface of degree d, then

deg(DS(X)) = d(d − 1)n−1.

Proof. The �rst part follows directly from the claim of Theorem 1. The “moreover” part is classical [12,
Exercise 5.14].

Example 7 (Cone over ellipse). Let X ⊆ C
3 the cone over an ellipse, de�ned by the homogeneous

equation f = x21+4x22−9x23. The singular locus SingX only contains 0, so as a consequence of Theorem1,

Figure 1. V(x31 + x
2
2x3) together with its dual and its data singular locus.
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Figure 2. V(x21 + 4x22 − 9x23) together with its dual.

we have that DS(X) equals the dual variety X∗, de�ned by the dual equation f ∗ = x21 + x22/4 − x23/9.
Figure 2 shows X in blue and X∗ in green.

The next example concerned the well-known andmuch used determinantal varieties. We will see that
for this variety, inclusion (1) is strict and inclusion (2) is an equality.

Example 8 (Determinantal varieties). Denote byM≤r
n×m the variety of n×mmatrices (suppose n ≤ m)

of rank at most r. It is classical that the singular locus is the varietyM≤r−1
n×m . We have that the dual variety

is exactlyM≤n−r
n×m [6, Chapter 1, Proposition 4.11]. So applying Theorem 1, we get that

M≤n−r
n×m ⊆ DS(M≤r

n×m) ⊆ M≤n−r
n×m + M≤r−1

n×m = M≤n−1
n×m .

So for rank-one matrices (r = 1), we get that DS(M≤1
n×m) = M≤n−1

n×m , which is not a surprise based on

Corollary 6, sinceM≤1
n×m is smooth, except at 0. But something more is true for general r. We claim that

the upper bound for the inclusions is always attained. For this, we have the following proposition.

Proposition 9. The ED data singular locus of the determinantal variety M≤r
n×m is equal to M≤n−1

n×m , for all
1 ≤ r ≤ n − 1.

Proof. An n×mmatrix U lies in the interior of DS(M≤r
n×m) if and only if it has a singular critical point.

All the critical points of U look like

T1 · Diag(0, 0, . . . , σi1 , 0, . . . , 0, σir , 0, . . . , 0) · T2,

where the singular value decomposition of U is equal to U = T1 · Diag(σ1, . . . , σn) · T2, with σ1 ≥

· · · ≥ σn singular values and T1,T2 orthogonal matrices of size n× n andm×m [3, Example 2.3]. Such
a critical point is singular if and only if it has rank at most r − 1, which can only happen if one of the
singular values σi1 , . . . , σir is zero. So there exists a singular critical point toU if and only if there is a zero
singular value ofU, which can only happen ifU has a rank defect. Hence all the (n−1)× (n−1)minors
are zero, that is, U ∈ M≤n−1

n×m . Now sinceM≤n−1
n×m is Zariski closed, we have the desired equality.
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The next example shows that X∗ is a subvariety of DS(X) but not necessarily a component of it.

Example 10 (Hurwitz determinant). In control theory, to check whether a given polynomial is stable,
one builds up the so-called Hurwitz matrix Hn and checks if every leading principal minor of Hn is
positive. Take n = 4, then the 4th Hurwitz matrix looks like:

H4 =









x2 x4 0 0
x1 x3 x5 0
0 x2 x4 0
0 x1 x3 x5









.

The ratio Ŵ4 = det(H4)/x5 is a homogeneous polynomial and is called the Hurwitz determinant for
n = 4 [3, Example 3.5].

Let X ⊆ C
5 be the a�ne cone de�ned by Ŵ4. Then its dual variety has one irreducible component

given by:

X∗ = V(−x3x4 + x2x5,−x23 + x1x5,−x2x3 + x1x4),

while its data singular locus DS(X) has two irreducible components and it is de�ned by:

V((x1x
2
2 + x2x3x4 + x24x5)(x

4
2x3 − x1x

3
2x4 − 2x1x2x

3
4 − x3x

4
4 + 2x32x4x5 + x2x

3
4x5)).

Clearly, X∗ is not a component of DS(X). Moreover, DS(X) is not equal to X∗ + SingX, since SingX =

V(x2, x4) and the point:

(2, 1, 1, 0, 1) = (1, 1, 0, 0, 0) + (1, 0, 1, 0, 1)

lies on X∗ + SingX but it is not on DS(X).

We have thus seen examples of varieties with: both inclusions in Theorem 1 being strict, both
inclusions in Theorem 1 being equalities and the second inclusion being an equality, while the �rst one
is strict. It is natural to ask if there are examples where the �rst inclusion is an equality, while the second
one is strict. The author could not �nd such an example, so the following question arises.

Problem 11. Find an a�ne cone X, such that X∗ = DS ⊂ X∗ + Sing(X) or prove that there is no such X.

4. Examples of the ED data isotropic locus

In this section, we present several application-oriented examples concerning the ED data isotropic locus
of an a�ne cone. We begin with presenting how can one computationally determine the data isotropic
locus of a variety.

Example 12 (Computing the data isotropic locus). We present the algorithm for the a�ne cone de�ned
by f = x1x6 − x2x5 + x3x4, representing the Grassmannian of planes in 4-space.
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From the output, we learn that DI(X) is the zero locus of the polynomial x1x6 − x2x5 + x3x4, so we get
that the data isotropic locus is equal to the dual variety which in this case equals the variety.

The next example shows that the data isotropic locus can be equal to the dual and strictly contained
in X∗ + (X ∩ Q).

Example 13 (Cayley–Menger variety). Let X denote the variety in C
3 with parametric representation:







x1 = (z1 − z2)
2,

x2 = (z1 − z3)
2,

x3 = (z2 − z3)
2.

Based on [1] and on [3, Example 3.7], the points in X record the squared distances among three
interacting agents with coordinates z1, z2, and z3 on the line R. The prime ideal of X is given by the
determinant of the Cayley–Menger matrix

(

2x2 x2 + x3 − x1
x2 + x3 − x1 2x3

)

So X is de�ned by the irreducible polynomial:

f = x21 − 2x1x2 + x22 − 2x1x3 − 2x2x3 + x23.

A�er running the computations, one can see that the data isotropic locus equals the dual variety, which
is de�ned by f ∗ = x1x2 + x1x3 + x2x3 (Figure 3). And it does not equal X∗ + (Q ∩ X), for example,
because the point (1, 0, 0) + (0, 1, i) ∈ X∗ + (Q ∩ X), but it does not lie on DI(X).

The next example shows that both inclusions from Theorem 2 can be strict.

Figure 3. Cayley–Menger variety (in blue) together with its dual (in green).
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Example 14 (Cayley’s cubic). Let X be de�ned by f = x31 − x1x
2
2 − x1x

2
3 + 2x2x3x4 − x1x

2
4, the 3 ×

3 symmetric determinant in C
4. This hypersurface is sometimes called the Cayley’s cubic surface and

receives much attention in the study of elliptopes and exponential varieties in algebraic statistics ([12,
Example 5.44], [11, Example 1.1], [10]). Its dual variety is the quartic Steiner surface de�ned by f ∗ =

x22x
2
3 − 2x1x2x3x4 + x22x

2
4 + x23x

2
4. A�er running the computations, one �nds that the data isotropic locus

is the union:

DI(X) = V(x181 + 4x161 x22 + 6x141 x42 − · · · + 729x43x
14
4 ) ∪ X∗.

So it is clearly not equal to the dual variety. And it is not equal to X∗ + (Q ∩ X) either, because, for
example, the point:

(1, 1, 0, 0) + (0, 0, 1, i) ∈ X∗ + (Q ∩ X)

but it is not in DI(X)

Our next example shows that the second inclusion in Theorem 2 can be equality andmoreover, it can
give the whole space.

Example 15 (Special essential variety). Essential matrices play an important role inmultiview geometry
[8]. The connections between the ED degree theory and multiview geometry were investigated [3,
Example 3.3]. The set of essential matrices is called the essential variety and is de�ned as follows:

E = {X ∈ M3×3| detX = 0, 2XXTX − trace(XXT)X = 0}.

It is a codimension 3 variety of degree 10. We are interested in the data isotropic locus of this variety, but
for computational reasons, we will take a linear section of it and we will only consider the symmetric,
constant diagonal essential matrices, which we will call the special essential variety and will denote by
SE . More precisely, we de�ne SE to be:

{

X =





x1 x2 x3
x2 x1 x4
x3 x4 x1





∣

∣

∣

∣

detX = 0, 2XXTX − trace(XXT)X = 0

}

.

Since this variety is not irreducible, we will perform our computations, componentwise. When running
the computations, one will �nd that the data isotropic locus is the whole space. Indeed, one can observe
that SE is inside the isotropic quadric Q, so every critical point is isotropic. We have that

DI(X) = X∗ + (X ∩ Q) = X∗ + X = C
4.

Moreover, DI(X) is not equal to the dual variety, since X∗ is a proper variety de�ned by f ∗ = (x22 +

x24)(x
2
2 + x23)(x

2
3 + x24). Moreover, clearly, the dual is not a component of DI(X).

In the last example, the reader can see that both inclusions from Theorem 2 can be equalities.

Example 16 (Line through the origin). In what follows letX be the line through the origin inC3 de�ned
by the vanishing of the polynomials x1 + 2x2 + 3x3 and 4x1 + 5x2 + 6x3. Then, we get that X intersects
the quadric Q only in the point 0, so by Theorem 2, we immediately get that X∗ = DI(X) = X∗ + {0},
and the dual is the orthogonal complement of X, so it is de�ned by x1 − 2x2 + x3.
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