448 research outputs found

    The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer.

    Get PDF
    Overexpression and/or hyperactivation of cyclin-dependent kinases (CDKs) are common features of most cancer types. CDKs have been shown to play important roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. CDK4/6 inhibitor palbociclib has been recently approved by the FDA for the treatment of breast cancer. CDK11 is a serine/threonine protein kinase in the CDK family and recent studies have shown that CDK11 also plays critical roles in cancer cell growth and proliferation. A variety of genetic and epigenetic events may cause universal overexpression of CDK11 in human cancers. Inhibition of CDK11 has been shown to lead to cancer cell death and apoptosis. Significant evidence has suggested that CDK11 may be a novel and promising therapeutic target for the treatment of cancers. This review will focus on the emerging roles of CDK11 in human cancers, and provide a proof-of-principle for continued efforts toward targeting CDK11 for effective cancer treatment

    MicroRNA Involvement in Osteosarcoma

    Get PDF
    Osteosarcoma (OS) is the most common primary malignant bone tumor, usually arising in the long bones of adolescents and young adults. While our knowledge of the molecular pathogenesis of OS has increased in recent years, we are still far from a comprehensive understanding of the molecular mechanisms of the disease, such as its tumorigenesis, specific mediators of disease progression, occurrence of chemoresistance, and development of metastasis. After the recent discovery of microRNAs (miRNAs), their critical roles in molecular biological processes have been of great interest in the cancer research field, including research on sarcomas. MiRNAs are highly conserved noncoding RNAs which play important roles as oncogenic or suppressive genes to simultaneously regulate multiple targets. Recent genome-wide screening using miRNA expression profiles has identified specific miRNA expression patterns that are associated with the biological and clinical properties of cancers. Additionally, miRNAs and their target genes or proteins can be potential novel biomarkers or therapeutic targets for cancer. However, there are several challenges that must be addressed in order to translate miRNA-based therapeutics to the clinical setting. In this review, we summarize the current understanding of the roles that miRNAs play in OS, and highlight their potential as biomarkers or therapeutic targets

    Rhabdomyosarcoma: Advances in Molecular and Cellular Biology.

    Get PDF
    Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR), in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS

    Oleanane triterpenoid CDDO-Me induces apoptosis in multidrug resistant osteosarcoma cells through inhibition of Stat3 pathway.

    Get PDF
    BackgroundThe activation of signal transducer and activator of transcription 3 (Stat3) pathway correlates with tumor growth, survival, drug resistance and poor prognosis in osteosarcoma. To explore the potential therapeutic values of this pathway, we assessed both the expression and the activation of Stat3 pathway in several pairs of multidrug resistant (MDR) osteosarcoma cell lines, and tissues. To explore the potential therapeutic values of this pathway, we analyzed the ability of the synthetic oleanane triterpenoid, C-28 methyl ester of 2-cyano-3,12-dioxoolen-1,9-dien-28-oic acid (CDDO-Me), to inhibit Stat3 expression and activation as well as its effects on doxorubicin sensitivity in osteosarcoma cells.MethodsExpression of Stat3, phosphorylated Stat3 (pStat3) and Stat3 targeted proteins, including Bcl-XL, Survivin and MCL-1 were determined in drug sensitive and MDR osteosarcoma cell lines and tissues by Western blot analysis. The effect of CDDO-Me on osteosarcoma cell growth was evaluated by MTT and apoptosis by PARP cleavage assay and caspase-3/7 activity.ResultsStat3 pathway was activated in osteosarcoma tissues and in MDR cell lines. CDDO-Me inhibited growth and induced apoptosis in osteosarcoma cell lines. Treatment with CDDO-Me significantly decreased the level of nuclear translocation and phosphorylation of Stat3. The inhibition of Stat3 pathway correlated with the suppression of the anti-apoptotic Stat3 targeted genes Bcl-XL, survivin, and MCL-1. Furthermore, CDDO-Me increased the cytotoxic effects of doxorubicin in the MDR osteosarcoma cell lines.ConclusionsStat3 pathway is overexpressed in MDR osteosarcoma cells. CDDO-Me significantly inhibited Stat3 phosphorylation, Stat3 nuclear translocation and induced apoptosis in osteosarcoma. This study provides the framework for the clinical evaluation of CDDO-Me, either as monotherapy or perhaps even more effectively in combination with doxorubicin to treat osteosarcoma and overcome drug resistance

    Targeting EZH2-mediated methylation of H3K27 inhibits proliferation and migration of Synovial Sarcoma in vitro.

    Get PDF
    Synovial sarcoma is an aggressive soft tissue sarcoma genetically defined by the fusion oncogene SS18-SSX. It is hypothesized that either SS18-SSX disrupts SWI/SNF complex inhibition of the polycomb complex 2 (PRC2) methyltransferase Enhancer of Zeste Homologue 2 (EZH2), or that SS18-SSX is able to directly recruit PRC2 to aberrantly silence target genes. This is of potential therapeutic value as several EZH2 small molecule inhibitors are entering early phase clinical trials. In this study, we first confirmed EZH2 expression in the 76% of human synovial sarcoma samples. We subsequently investigated EZH2 as a therapeutic target in synovial sarcoma in vitro. Knockdown of EZH2 by shRNA or siRNA resulted in inhibition of cell growth and migration across a series of synovial sarcoma cell lines. The EZH2 selective small-molecule inhibitor EPZ005687 similarly suppressed cell proliferation and migration. These data support the hypothesis that targeting EZH2 may be a promising therapeutic strategy in the treatment of synovial sarcoma; clinical trials are initiating enrollment currently

    MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer.

    Get PDF
    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer

    The experience of accommodating privacy restrictions during implementation of a large-scale surveillance study of an osteoporosis medication.

    Get PDF
    PurposeTo explore whether privacy restrictions developed to protect patients have complicated research within a 15-year surveillance study conducted with US cancer registries.MethodsData from enrolling 27 cancer registries over a 10-year period were examined to describe the amount of time needed to obtain study approval. We also analyzed the proportion of patients that completed a research interview out of the total reported by the registries and examined factors thought to influence this measure.ResultsThe average length of the research review process from submission to approval of the research was 7 months (range, <1 to 24 months), and it took 6 months or more to obtain approval of the research at 41% of the cancer registries. Most registries (78%) required additional permission steps to gain access to patients for research. After adjustment for covariates, the interview response proportion was 110% greater (ratio of response proportion = 2.1; 95% confidence interval: 1.3, 3.3) when the least restrictive versus the most restrictive permission steps were required. An interview was more often completed for patients (or proxies) if patients were alive, within a year of being diagnosed, or identified earlier in the study.ConclusionsLengthy research review processes increased the time between diagnosis and provision of patient information to the researcher. Requiring physician permission for access to patients was associated with lower subject participation. A single national point of entry for use of cancer registry data in health research is worthy of consideration to make the research approval process efficient. © 2016 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd
    corecore