24 research outputs found
New perturbative solutions of the Kerr-Newman dilatonic black hole field equations
This work describes new perturbative solutions to the classical,
four-dimensional Kerr--Newman dilaton black hole field equations. Our solutions
do not require the black hole to be slowly rotating. The unperturbed solution
is taken to be the ordinary Kerr solution, and the perturbation parameter is
effectively the square of the charge-to-mass ratio of the
Kerr--Newman black hole. We have uncovered a new, exact conjugation (mirror)
symmetry for the theory, which maps the small coupling sector to the strong
coupling sector (). We also calculate the gyromagnetic ratio of
the black hole.Comment: Revtex, 27 page
Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops
We investigate the solar flare of 20 October 2002. The flare was accompanied
by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray
emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of
the HXR time profiles in different energy channels made with the Lomb
periodogram indicates two statistically significant time periods of about 16
and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR
emission in the impulsive phase of the flare. The 16-second QPP were more
pronounced in the thermal HXR emission and were observed both in the impulsive
and in the decay phases of the flare. Imaging analysis of the flare region, the
determined time periods of the QPP and the estimated physical parameters of
magnetic loops in the flare region allow us to interpret the observations as
follows. 1) In the impulsive phase energy was released and electrons were
accelerated by successive acts with the average time period of about 36 seconds
in different parts of two spatially separated, but interacting loop systems of
the flare region. 2) The 36-second periodicity of energy release could be
caused by the action of fast MHD oscillations in the loops connecting these
flaring sites. 3) During the first explosive acts of energy release the MHD
oscillations (most probably the sausage mode) with time period of 16 seconds
were excited in one system of the flare loops. 4) These oscillations were
maintained by the subsequent explosive acts of energy release in the impulsive
phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure
An action for the exact string black hole
A local action is constructed describing the exact string black hole
discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a
special 2D Maxwell-dilaton gravity theory, linear in curvature and field
strength. Two constants of motion exist: mass M>1, determined by the level k,
and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM
mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking
entropy are derived and studied in detail. Winding/momentum mode duality
implies the existence of a similar action, arising from a branch ambiguity,
which describes the exact string naked singularity. In the strong coupling
limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black
hole. Some applications to black hole thermodynamics and 2D string theory are
discussed and generalizations - supersymmetric extension, coupling to matter
and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of
his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3
and at the end of 5.3 by adding 2 pages of clarifying text; updated refs;
corrected typo
A connectome and analysis of the adult Drosophila central brain
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain
A connectome and analysis of the adult Drosophila central brain
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain
Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations
Purpose
To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics.
Patients and Methods
One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS).
Results
There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO.
Conclusion
Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
Critical role of effector macrophages in mediating CD4-dependent alloimmune injury of transplanted liver parenchymal cells
Despite the recognition that humoral rejection is an important cause of allograft injury, the mechanism of antibody-mediated injury to allograft parenchyma is not well understood. We used a well-characterized murine hepatocellular allograft model to determine the mechanism of antibody-mediated destruction of transplanted liver parenchymal cells. In this model allogeneic hepatocytes are transplanted into CD8-deficient hosts in order to focus on CD4-dependent, alloantibody-mediated rejection. Host serum alloantibody levels correlated with in vivo allospecific cytotoxic activity in CD8 KO hepatocyte rejector mice. Host macrophage depletion, but not CD4(+) T cell, NK cell, neutrophil, or complement depletion, inhibited in vivo allocytotoxicity. Recipient macrophage deficiency delayed CD4-dependent hepatocyte rejection and inhibited in vivo allocytotoxicity without influencing alloantibody production. Furthermore, hepatocyte coincubation with alloantibody and macrophages resulted in antibody-dependent hepatocellular cytotoxicity in vitro. These studies are consistent with a paradigm of acute humoral rejection in which CD4(+) T cell-dependent alloantibody production results in the targeting of transplanted allogeneic parenchymal cells for macrophage-mediated cytotoxic immune damage. Consequently, strategies to eliminate recipient macrophages during CD4-dependent rejection pathway may prolong allograft survival