162 research outputs found

    Optimizing aerodynamic lenses for single-particle imaging

    Full text link
    A numerical simulation infrastructure capable of calculating the flow of gas and the trajectories of particles through an aerodynamic lens injector is presented. The simulations increase the fundamental understanding and predict optimized injection geometries and parameters. Our simulation results were compared to previous reports and also validated against experimental data for 500 nm polystyrene spheres from an aerosol-beam- characterization setup. The simulations yielded a detailed understanding of the radial phase-space distribution and highlighted weaknesses of current aerosol injectors for single-particle diffractive imaging. With the aid of these simulations we developed new experimental implementations to overcome current limitations

    Spatially separated polar samples of the cis and trans conformers of 3-fluorophenol

    Full text link
    We demonstrate the spatial separation of the cis- and trans-conformers of 3-fluorophenol in the gas phase based on their distinct electric dipole moments. For both conformers we create very polar samples of their lowest-energy rotational quantum states. A >95 % pure beam of trans-3-fluorophenol and a >90 % pure beam of the lowest-energy rotational states of the less polar cis-3-fluorophenol were obtained for helium and neon supersonic expansions, respectively. This is the first demonstration of the spatial separation of the lowest-energy rotational states of the least polar conformer, which is necessary for strong alignment and orientation of all individual conformers.Comment: 5 pages, 5 figure

    Spatially-controlled complex molecules and their applications

    Full text link
    The understanding of molecular structure and function is at the very heart of the chemical and molecular sciences. Experiments that allow for the creation of structurally pure samples and the investigation of their molecular dynamics and chemical function have developed tremendously over the last few decades, although "there's plenty of room at the bottom" for better control as well as further applications. Here, we describe the use of inhomogeneous electric fields for the manipulation of neutral molecules in the gas-phase, \ie, for the separation of complex molecules according to size, structural isomer, and quantum state. For these complex molecules, all quantum states are strong-field seeking, requiring dynamic fields for their confinement. Current applications of these controlled samples are summarised and interesting future applications discussed.Comment: Accepted by Int. Rev. Phys. Che

    Development and characterization of a laser-induced acoustic desorption source

    Full text link
    A laser-induced acoustic desorption source, developed for use at central facilities, such as free-electron lasers, is presented. It features prolonged measurement times and a fixed interaction point. A novel sample deposition method using aerosol spraying provides a uniform sample coverage and hence stable signal intensity. Utilizing strong-field ionization as a universal detection scheme, the produced molecular plume is characterized in terms of number density, spatial extend, fragmentation, temporal distribution, translational velocity, and translational temperature. The effect of desorption laser intensity on these plume properties is evaluated. While translational velocity is invariant for different desorption laser intensities, pointing to a non-thermal desorption mechanism, the translational temperature increases significantly and higher fragmentation is observed with increased desorption laser fluence.Comment: 8 pages, 7 figure

    Characterizing and optimizing a laser-desorption molecular beam source

    Full text link
    The design and characterization of a new laser-desorption molecular beam source, tailored for use in x-ray-free-electron-laser and ultrashort-pulse-laser imaging experiments, is presented. It consists of a single mechanical unit containing all source components, including the molecular-beam valve, the sample, and the fiber-coupled desorption laser, which is movable in five axes, as required for experiments at central facilities. Utilizing strong-field ionization, we characterize the produced molecular beam and evaluate the influence of desorption laser pulse energy, relative timing of valve opening and desorption laser, sample bar height, and which part of the molecular packet is probed on the sample properties. Strong-field ionization acts as a universal probe and allows to detect all species present in the molecular beam, and hence enables us to analyze the purity of the produced molecular beam, including molecular fragments. We present optimized experimental parameters for the production of the purest molecular beam, containing the highest yield of intact parent ions, which we find to be very sensitive to the placement of the desorbed-molecules plume within the supersonic expansion

    Visualizing aerosol-particle injection for diffractive-imaging experiments

    Full text link
    Delivering sub-micrometer particles to an intense x-ray focus is a crucial aspect of single-particle diffractive-imaging experiments at x-ray free-electron lasers. Enabling direct visualization of sub-micrometer aerosol particle streams without interfering with the operation of the particle injector can greatly improve the overall efficiency of single-particle imaging experiments by reducing the amount of time and sample consumed during measurements. We have developed in-situ non-destructive imaging diagnostics to aid real-time particle injector optimization and x-ray/particle-beam alignment, based on laser illumination schemes and fast imaging detectors. Our diagnostics are constructed to provide a non-invasive rapid feedback on injector performance during measurements, and have been demonstrated during diffraction measurements at the FLASH free-electron laser.Comment: 15 page

    Paraoxonase 2 protein is spatially expressed in the human placenta and selectively reduced in labour

    Get PDF
    Humans parturition involves interaction of hormonal, neurological, mechanical stretch and inflammatory pathways and the placenta plays a crucial role. The paraoxonases (PONs 1–3) protect against oxidative damage and lipid peroxidation, modulation of endoplasmic reticulum stress and regulation of apoptosis. Nothing is known about the role of PON2 in the placenta and labour. Since PON2 plays a role in oxidative stress and inflammation, both features of labour, we hypothesised that placental PON2 expression would alter during labour. PON2 was examined in placentas obtained from women who delivered by cesarean section and were not in labour and compared to the equivalent zone of placentas obtained from women who delivered vaginally following an uncomplicated labour. Samples were obtained from 12 sites within each placenta: 4 equally spaced apart pieces were sampled from the inner, middle and outer placental regions. PON2 expression was investigated by Western blotting and real time PCR. Two PON2 forms, one at 62 kDa and one at 43 kDa were found in all samples. No difference in protein expression of either isoform was found between the three sites in either the labour or non-labour group. At the middle site there was a highly significant decrease in PON2 expression in the labour group when compared to the non-labour group for both the 62 kDa form (p = 0.02) and the 43 kDa form (p = 0.006). No spatial differences were found within placentas at the mRNA level in either labour or non-labour. There was, paradoxically, an increase in PON2 mRNA in the labour group at the middle site only. This is the first report to describe changes in PON2 in the placenta in labour. The physiological and pathological significance of these remains to be elucidated but since PON2 is anti-inflammatory further studies are warranted to understand its role
    corecore