16 research outputs found

    Medulloblastoma and Brucellosis - Molecular Evidence of Brucella sp in Association with Central Nervous System Cancer

    No full text
    Neurobrucellosis has been reported to cause lesions in a number of different locations in the central nervous system. Histologically or radiologically, these lesions were consistent with an infection. In response to parents who believed their child's brain tumor, histologically typical of medulloblastoma, was in reality neurobrucellosis, formalin-fixed paraffin-embedded tumor tissue from the medulloblastoma was sectioned, DNA extracted, and tested by polymerase chain reaction (PCR). Specific primer/probe sets, designed in our laboratory to target Brucella species, B. melitensis, B. abortus and B. suis, and designated OMP31, B-m, B-a and B-s, respectively, were used in TaqMan real-time PCR to amplify those gene targets in two separate blocks of the child's tumor. Sections from two blocks were positive only for Brucella species. Although the patient grew up in a European country known to harbor brucella in foods, such as unpasturized milk and cheese, the patient was seronegative for B. mellitensis, B. suis, and B. abortus. In an effort to test whether a relationship existed between the presence of brucella and medulloblastoma, 20 medulloblastomas were retrieved from the tissue repository of the AFIP. The above four primer/probe sets were again used to amplify brucella DNA. Five of 20 tumors (25%) contained Brucella species DNA by the OMP31 primer/probe set. None of the 20 medulloblastomas had specific sequences for B. mellitensis, B. suis, or B. abortus. Is chronic brucellosis similar to other infectious agents such as helicobacter that is associated with tumor formation?</p

    Multifactorial Origin of Exertional Rhabdomyolysis, Recurrent Hematuria, and Episodic Pain in a Service Member with Sickle Cell Trait

    No full text
    Individuals with Sickle Cell Trait (SCT), generally considered a benign carrier state of hemoglobin S (HbAS), are thought to be at risk for exertional rhabdomyolysis and hematuria, conditions that can also be caused by various other acquired and inherited factors. We report an SCT positive service member with an exertional rhabdomyolysis event, recurrent hematuria with transient proteinuria, and episodic burning pain in the lower extremities. Clinical and genetic studies revealed the multifactorial nature of his complex phenotype. The service member was taking prescription medications known to be associated with exertional rhabdomyolysis. He carried a pathogenic mutation, NPHS2 p.V260E, reported in nephropathy and a new variant p.R838Q in SCN11A, a gene involved in familial episodic pain syndrome. Results suggest that drug-to-drug interactions coupled with the stress of exercise, coinheritance of HbAS and NPHS2 p.V260E, and p. R838Q in SCN11A contributed to exertional rhabdomyolysis, recurrent hematuria with proteinuria, and episodic pain, respectively. This case underscores the importance of comprehensive clinical and genetic evaluations to identify underlying causes of health complications reported in SCT individuals

    Association of Anti-3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Autoantibodies With DRB1*07:01 and Severe Myositis in Juvenile Myositis Patients.

    No full text
    OBJECTIVE: Autoantibodies recognizing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are associated with statin exposure, the HLA allele DRB1*11:01, and necrotizing muscle biopsies in adult myositis patients. The aim of this study was to characterize the features of juvenile anti-HMGCR-positive myositis patients. METHODS: The sera of 440 juvenile myositis patients were screened for anti-HMGCR autoantibodies. Demographic and clinical features, responses to therapy, and HLA alleles were assessed. The features of anti-HMGCR-positive patients were compared to those of previously described adult patients with this autoantibody and to children with other myositis-specific autoantibodies (MSAs). RESULTS: Five of 440 patients (1.1%) were anti-HMGCR-positive; none had taken statin medications. Three patients had rashes characteristic of juvenile dermatomyositis and 2 patients had immune-mediated necrotizing myopathies. The median highest creatine kinase (CK) level of anti-HMGCR-positive subjects was 17,000 IU/liter. All patients had severe proximal muscle weakness, distal weakness, muscle atrophy, joint contractures, and arthralgias, which were all more prevalent in HMGCR-positive subjects compared to MSA-negative patients or those with other MSAs. Anti-HMGCR-positive patients had only partial responses to multiple immunosuppressive medications, and their disease often took a chronic course. The DRB1*07:01 allele was present in all 5 patients, compared to 26.25% of healthy controls (corrected P = 0.01); none of the 5 juvenile patients had DRB1*11:01. CONCLUSION: Compared to children with other MSAs, muscle disease appears to be more severe in those with anti-HMGCR autoantibodies. Like adults, children with anti-HMGCR autoantibodies have severe weakness and high CK levels. In contrast to adults, in anti-HMGCR-positive children, there is a strong association with HLA-DRB1*07:01
    corecore