6,624 research outputs found

    Sprunggelenkprothese bei Valgusarthrose

    Get PDF
    Zusammenfassung: Die Arthrose des oberen Sprunggelenks (OSG) ist häufig mit einer Fehlstellung verbunden, dabei ist die Valgusarthrose seltener als die Varusarthrose. Die Ursachen für eine Valgusarthrose sind eine mediale Bandinstabilität, ein Pes planovalgus und posttraumatische Fehlstellungen z.B. nach Fibulafraktur oder Stauchung des lateralen Tibiaplateaus. Damit eine OSG-Prothese kurz- wie auch langfristig korrekt und schmerzfrei funktionieren kann, muss die Biomechanik entsprechend den Prinzipien der mechanischen Achse, deren Wichtigkeit in der Orthopädie allgemein akzeptiert ist, wiederhergestellt werden. Richtlinien sind dabei (1) ein anteriorer tibiotalarer Winkel von etwa 90° und (2) eine neutrale Rückfußstellung. Diese wird vorzugsweise mit der Rückfußaufnahme nach Saltzman gemessen. Dabei ist zu beachten, dass der normale Rückfuß in einer Neutralstellung bis 1-2° Varusposition und nicht wie bisher angenommen in einer Valgusstellung ist. Je nach Ausmaß und Lokalisation der Valgusdeformität werden in unterschiedlicher Reihenfolge (1) die OSG-Prothese implantiert, (2) supra- und (3) inframalleoläre Korrekturosteotomien/-Arthrodesen, (4) eine mediale Bandplastik, (5) eine Fibulaosteotomie (6) mit eventueller Rekonstruktion der Syndesmose durchgeführ

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    MxA Gene Expression after Live Virus Vaccination: A Sensitive Marker for Endogenous Type I Interferon

    Get PDF
    MxA gene expression is known to be regulated tightly and exclusively by type I interferons (IFNs). The kinetics of MxA gene expression was analyzed in peripheral blood mononuclear cells from 11 healthy volunteers vaccinated with the 17-D strain of yellow fever virus. A reliable induction of MxA RNA and MxA protein was found in the absence of easily detectable serum IFN activity. Thus, steady-state MxA RNA levels were elevated 8- to 30-fold above prevaccination levels on day 5 after vaccination. The average increase of MxA protein was ∼50-fold. In contrast, no induction of MxA RNA or MxA protein was detectable in 3 similarly vaccinated controls who were immune because of previous vaccinations. The IFN marker 2′-5′-oligoadenylate (2-5A) synthetase known to react to both type I and type II IFNs showed a similar response but did not differentiate equally well between nonimmune and immune vaccinees. β2-microglobulin and neopterin reacted poorly, remaining at low levels within the normal range. These results demonstrate that MxA gene expression is a good marker for detecting minute quantities of biologically active type I IFN during viral infection

    Restoration of NK Cell Cytotoxic Function With Elotuzumab and Daratumumab Promotes Elimination of Circulating Plasma Cells in Patients With SLE.

    Get PDF
    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by multiple cellular and molecular dysfunctions of the innate and adaptive immunity. Cytotoxic function of NK cells is compromised in patients with SLE. Herein, we characterized the phenotypic alterations of SLE NK cells in a comprehensive manner to further delineate the mechanisms underlying the cytotoxic dysfunction of SLE NK cells and identify novel potential therapeutic targets. Therefore, we examined PBMC from SLE patients and matched healthy controls by single-cell mass cytometry to assess the phenotype of NK cells. In addition, we evaluated the cell function of NK cells (degranulation and cytokine production) and the killing of B cell subpopulations in a B cell-NK cell in vitro co-culture model. We found that SLE NK cells expressed higher levels of CD38 and were not able to adequately upregulate SLAMF1 and SLAMF7 following activation. In addition, ligation of SLAMF7 with elotuzumab or of CD38 with daratumumab on SLE NK cells enhanced degranulation of both healthy and SLE NK cells and primed them to kill circulating plasma cells in an in vitro co-culture system. Overall, our data indicated that dysregulated expression of CD38, SLAMF1 and SLAMF7 on SLE NK cells is associated with an altered interplay between SLE NK cells and plasma cells, thus suggesting their contribution to the accumulation of (auto)antibody producing cells. Accordingly, targeting SLAMF7 and CD38 may represent novel therapeutic approaches in SLE by enhancing NK cell function and promoting elimination of circulating plasma cell

    Observation of non-exponential magnetic penetration profiles in the Meissner state - A manifestation of non-local effects in superconductors

    Full text link
    Implanting fully polarized low energy muons on the nanometer scale beneath the surface of a superconductor in the Meissner state enabled us to probe the evanescent magnetic field profile B(z)(0<z<=200nm measured from the surface). All the investigated samples [Nb: kappa \simeq 0.7(2), Pb: kappa \simeq 0.6(1), Ta: kappa \simeq 0.5(2)] show clear deviations from the simple exponential B(z) expected in the London limit, thus revealing the non-local response of these superconductors. From a quantitative analysis within the Pippard and BCS models the London penetration depth lambda_L is extracted. In the case of Pb also the clean limit coherence length xi0 is obtained. Furthermore we find that the temperature dependence of the magnetic penetration depth follows closely the two-fluid expectation 1/lambda^2 \propto 1-(T/T_c)^4. While B(z) for Nb and Pb are rather well described within the Pippard and BCS models, for Ta this is only true to a lesser degree. We attribute this discrepancy to the fact that the superfluid density is decreased by approaching the surface on a length scale xi0. This effect, which is not taken self-consistently into account in the mentioned models, should be more pronounced in the lowest kappa regime consistently with our findings.Comment: accepted in PRB 14 pages, 17 figure

    SLAMF Receptor Expression Identifies an Immune Signature That Characterizes Systemic Lupus Erythematosus.

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology, linked to alterations in both the innate and the adaptive immune system. Due to the heterogeneity of the clinical presentation, the diagnosis of SLE remains complicated and is often made years after the first symptoms manifest, delaying treatment, and worsening the prognosis. Several studies have shown that signaling lymphocytic activation molecule family (SLAMF) receptors are aberrantly expressed and dysfunctional in SLE immune cells, contributing to the altered cellular function observed in these patients. The aim of this study was to determine whether altered co-/expression of SLAMF receptors on peripheral blood mononuclear cells (PBMC) identifies SLE characteristic cell populations. To this end, single cell mass cytometry and bioinformatic analysis were exploited to compare SLE patients to healthy and autoimmune diseases controls. First, the expression of each SLAMF receptor on all PBMC populations was investigated. We observed that SLAMF1+ B cells (referred to as SLEB1) were increased in SLE compared to controls. Furthermore, the frequency of SLAMF4+ monocytes and SLAMF4+ NK were inversely correlated with disease activity, whereas the frequency SLAMF1+ CD4+ TDEM cells were directly correlated with disease activity. Consensus clustering analysis identified two cell clusters that presented significantly increased frequency in SLE compared to controls: switch memory B cells expressing SLAMF1, SLAMF3, SLAMF5, SLAMF6 (referred to as SLESMB) and circulating T follicular helper cells expressing the same SLAMF receptors (referred to as SLEcTFH). Finally, the robustness of the identified cell populations as biomarkers for SLE was evaluated through ROC curve analysis. The combined measurement of SLEcTFH and SLEB1 or SLESMB cells identified SLE patients in 90% of cases. In conclusion, this study identified an immune signature for SLE based on the expression of SLAMF receptors on PBMC, further highlighting the involvement of SLAMF receptors in the pathogenesis of SLE

    Modular microsystem for epithelial cell culture and electrical characterisation

    Get PDF
    We have realised a microsystem for the culture and electrical characterisation of epithelial cell layers for cell-based diagnostic applications. The main goal of this work is to achieve both cell culture and impedimetric and potentiometric characterisation on a single device. The miniaturised cell culture system enables the uses of scarce epithelial cells, as obtained from transgenic mice or from human biopsies. The device is completely modular and offers high flexibility: a polycarbonate membrane used as cell substrate is glued in between two moulded Polydimethylsiloxane (PDMS) layers to form a sandwich, which is placed between two stacks, containing the microfluidic channels and integrated measurement electrodes. The polycarbonate membrane sandwich can be removed, replaced or analysed at any time. We have characterised the impedimetric properties of our microsystem, demonstrated epithelial cell layer growth within it, and have done the initial electrical characterisation of epithelial cell layers

    Diffuse reflection of ultracold neutrons from low-roughness surfaces

    Get PDF
    We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w , obtained by fitting the micro-roughness model to the data are in the range 1 \le b \le3 nm and 10 \le w \le120 nm, in qualitative agreement with independent measurements using atomic force microscop
    corecore