7,225 research outputs found

    Sprunggelenkprothese bei Valgusarthrose

    Get PDF
    Zusammenfassung: Die Arthrose des oberen Sprunggelenks (OSG) ist häufig mit einer Fehlstellung verbunden, dabei ist die Valgusarthrose seltener als die Varusarthrose. Die Ursachen für eine Valgusarthrose sind eine mediale Bandinstabilität, ein Pes planovalgus und posttraumatische Fehlstellungen z.B. nach Fibulafraktur oder Stauchung des lateralen Tibiaplateaus. Damit eine OSG-Prothese kurz- wie auch langfristig korrekt und schmerzfrei funktionieren kann, muss die Biomechanik entsprechend den Prinzipien der mechanischen Achse, deren Wichtigkeit in der Orthopädie allgemein akzeptiert ist, wiederhergestellt werden. Richtlinien sind dabei (1) ein anteriorer tibiotalarer Winkel von etwa 90° und (2) eine neutrale Rückfußstellung. Diese wird vorzugsweise mit der Rückfußaufnahme nach Saltzman gemessen. Dabei ist zu beachten, dass der normale Rückfuß in einer Neutralstellung bis 1-2° Varusposition und nicht wie bisher angenommen in einer Valgusstellung ist. Je nach Ausmaß und Lokalisation der Valgusdeformität werden in unterschiedlicher Reihenfolge (1) die OSG-Prothese implantiert, (2) supra- und (3) inframalleoläre Korrekturosteotomien/-Arthrodesen, (4) eine mediale Bandplastik, (5) eine Fibulaosteotomie (6) mit eventueller Rekonstruktion der Syndesmose durchgeführ

    Qualification Procedures of the CMS Pixel Barrel Modules

    Full text link
    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005, Bonn, Germna

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    MxA Gene Expression after Live Virus Vaccination: A Sensitive Marker for Endogenous Type I Interferon

    Get PDF
    MxA gene expression is known to be regulated tightly and exclusively by type I interferons (IFNs). The kinetics of MxA gene expression was analyzed in peripheral blood mononuclear cells from 11 healthy volunteers vaccinated with the 17-D strain of yellow fever virus. A reliable induction of MxA RNA and MxA protein was found in the absence of easily detectable serum IFN activity. Thus, steady-state MxA RNA levels were elevated 8- to 30-fold above prevaccination levels on day 5 after vaccination. The average increase of MxA protein was ∼50-fold. In contrast, no induction of MxA RNA or MxA protein was detectable in 3 similarly vaccinated controls who were immune because of previous vaccinations. The IFN marker 2′-5′-oligoadenylate (2-5A) synthetase known to react to both type I and type II IFNs showed a similar response but did not differentiate equally well between nonimmune and immune vaccinees. β2-microglobulin and neopterin reacted poorly, remaining at low levels within the normal range. These results demonstrate that MxA gene expression is a good marker for detecting minute quantities of biologically active type I IFN during viral infection

    Magnetoresistance Anisotropy of Polycrystalline Cobalt Films: Geometrical-Size- and Domain-Effects

    Full text link
    The magnetoresistance (MR) of 10 nm to 200 nm thin polycrystalline Co-films, deposited on glass and insulating Si(100), is studied in fields up to 120 kOe, aligned along the three principal directions with respect to the current: longitudinal, transverse (in-plane), and polar (out-of-plane). At technical saturation, the anisotropic MR (AMR) in polar fields turns out to be up to twice as large as in transverse fields, which resembles the yet unexplained geometrical size-effect (GSE), previously reported for Ni- and Permalloy films. Upon increasing temperature, the polar and transverse AMR's are reduced by phonon-mediated sd-scattering, but their ratio, i.e. the GSE remains unchanged. Basing on Potters's theory [Phys.Rev.B 10, 4626(1974)], we associate the GSE with an anisotropic effect of the spin-orbit interaction on the sd-scattering of the minority spins due to a film texture. Below magnetic saturation, the magnitudes and signs of all three MR's depend significantly on the domain structures depicted by magnetic force microscopy. Based on hysteresis loops and taking into account the GSE within an effective medium approach, the three MR's are explained by the different magnetization processes in the domain states. These reveal the importance of in-plane uniaxial anisotropy and out-of-plane texture for the thinnest and thickest films, respectively.Comment: 10 pages, 9 figure

    Statistik der biologisch wirtschaftenden Landwirtschaftsbetriebe der Schweiz 1993

    Get PDF
    Diese Publikationen informiert mit ausführlichen Tabellen, Grafiken und erläuternden Texten die Situation des biologischen Landbaus in der Schweiz im Jahr 1993

    Observation of non-exponential magnetic penetration profiles in the Meissner state - A manifestation of non-local effects in superconductors

    Full text link
    Implanting fully polarized low energy muons on the nanometer scale beneath the surface of a superconductor in the Meissner state enabled us to probe the evanescent magnetic field profile B(z)(0<z<=200nm measured from the surface). All the investigated samples [Nb: kappa \simeq 0.7(2), Pb: kappa \simeq 0.6(1), Ta: kappa \simeq 0.5(2)] show clear deviations from the simple exponential B(z) expected in the London limit, thus revealing the non-local response of these superconductors. From a quantitative analysis within the Pippard and BCS models the London penetration depth lambda_L is extracted. In the case of Pb also the clean limit coherence length xi0 is obtained. Furthermore we find that the temperature dependence of the magnetic penetration depth follows closely the two-fluid expectation 1/lambda^2 \propto 1-(T/T_c)^4. While B(z) for Nb and Pb are rather well described within the Pippard and BCS models, for Ta this is only true to a lesser degree. We attribute this discrepancy to the fact that the superfluid density is decreased by approaching the surface on a length scale xi0. This effect, which is not taken self-consistently into account in the mentioned models, should be more pronounced in the lowest kappa regime consistently with our findings.Comment: accepted in PRB 14 pages, 17 figure

    Dual effect of temperature on the human epithelial Na+ channel

    Get PDF
    The amiloride-sensitive epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption in the distal segments of the nephron, in the colon and in the airways. Its activity is regulated by intracellular and extracellular factors but the mechanisms of this regulation are not yet completely understood. Recently, we have shown that the fast regulation of ENaC by the extracellular [Na+], a phenomenon termed self-inhibition, is temperature dependent. In the present study we examined the effects of temperature on the single-channel properties of ENaC. Single-channel recordings from excised patches showed that the channel open probability (Po, estimated from the number of open channels N.Po, where N is the total number of channels) increased on average two- to threefold while the single-channel conductance decreased by about half when the temperature of the perfusion solution was lowered from approximately 30 to approximately 15 degrees C. The effects of temperature on the single-channel conductance and Po explain the changes of the macroscopic current that can be observed upon temperature changes and, in particular, the paradoxical effect of temperature on the current carried by ENaC
    corecore