739 research outputs found

    Fluidized bed combustor modeling

    Get PDF
    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested

    Spectromicroscopy of electronic phase separation in Kx_xFe2y_{2-y}Se2_2 superconductor

    Full text link
    Structural phase separation in Ax_xFe2y_{2-y}Se2_2 system has been studied by different experimental techniques, however, it should be important to know how the electronic uniformity is influenced, on which length scale the electronic phases coexist, and what is their spatial distribution. Here, we have used novel scanning photoelectron microscopy (SPEM) to study the electronic phase separation in Kx_xFe2y_{2-y}Se2_2, providing a direct measurement of the topological spatial distribution of the different electronic phases. The SPEM results reveal a peculiar interconnected conducting filamentary phase that is embedded in the insulating texture. The filamentary structure with a particular topological geometry could be important for the high Tc_c superconductivity in the presence of a phase with a large magnetic moment in Ax_xFe2y_{2-y}Se2_2 materials.Comment: 14 pages,3 figure

    Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2

    Full text link
    We report an angle-resolved photoemission spectroscopy (ARPES) study on a triangular lattice superconductor Ir1x_{1-x}Ptx_{x}Te2_2 in which the Ir-Ir or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit interaction are cooperating and competing with one another. The Fermi surfaces of the substituted system are qualitatively similar to the band structure calculations for the undistorted IrTe2_2 with an upward chemical potential shift due to electron doping. A combination of the ARPES and the band structure calculations indicates that the Te 5p5p spin-orbit interaction removes the px/pyp_x/p_y orbital degeneracy and induces px±ipyp_x \pm ip_y type spin-orbit coupling near the A point. The inner and outer Fermi surfaces are entangled by the Te 5p5p and Ir 5d5d spin-orbit interactions which may provide exotic superconductivity with singlet-triplet mixing.Comment: 10 pages, 4 figure
    corecore