991 research outputs found

    Physical modelling of backward erosion piping in foundation beneath levee

    Get PDF
    Centrifuge model tests are performed to observe piping progression in foundation beneath levee and to examine influence of repeated seepage and thickness of foundation ground on piping progression. Once the pipe is formed beneath the levee, hydraulic gradient upstream of the pipe tip becomes larger while that along the pipe becomes rather small. Shift of this large hydraulic gradient position to the upstream with rise of the flood water level leads to the large subsidence of the slope in the protected side and marked increase in flow rate. Repeated seepage and thickness of the permeable foundation layer have influence on stability of levee against piping. Repeated seepage makes the piping progression faster and levee vulnerable to the piping formation. With the thinner permeable foundation layer beneath the levee, the levee is at higher risk to cause brittle failure while the required hydraulic gradient to cause piping is larger

    Purification and In Vitro Growth of Human Epidermal Basal Keratinocytes Using a Monoclonal Antibody

    Get PDF
    We have made a new monoclonal antibody, EL-2, and used it with an immunorosetting procedure combined with Ficoll-Hypaque gradient centrifugation to purify and culture basal keratinocytes. Immunofluorescence of cell suspensions and immunoperoxidase staining of tissue sections demonstrate that EL-2 reacts with malignant cell lines, activated lymphocytes and monocytes, and basal keratinocytes. Sequential immunoprecipitation studies demonstrate that monoclonal antibodies EL-2 and 4F2 detect the same membrane protein. However, we have extended previous studies by making the new observation that both EL-2 and 4F2 react with cultured melanocytes. Basal keratinocytes were purified from single-cell epidermal suspensions by incubation with EL-2 followed by rosetting with rabbit antimouse IgG antibodies covalently linked to bovine red blood cells. Rosetting (basal) keratinocytes were separated from EL-2 negative cells by Ficoll gradient centrifugation. We obtained basal keratinocyte populations of >90% purity as assessed by reactivity with EL-2 and another basal keratinocyte-specific monoclonal antibody, HCl. Langerhans cell, fibroblast, and melanocyte contamination was negligible. Cultures of basal keratinocytes were enriched in EL-2-reactive cells throughout the entire 19 days of culture studied. EL-2 is being used to characterize disorders of keratinocyte proliferation; EL-2 reacted with both squamous and basal cell carcinomas. EL-2 stained only the basal layer of lesional skin from patients with psoriasis, pityriasis rubra pilaris, and Darier's disease. Purification of basal keratinocytes will be important in biochemical and functional studies of normal skin and in establishing long-term keratinocyte lines from normal cells

    Phase II study of S-1, a novel oral fluoropyrimidine derivative, in patients with metastatic colorectal carcinoma

    Get PDF
    This study set out to evaluate, in patients with metastatic colorectal carcinoma, the efficacy and toxicity of S-1, which contains tegafur, 5-chloro-2,4-dihydroxypyridine (CDHP) and potassium oxonate, based on a biochemical modulation of 5-fluorouracil (5-FU) targeted at inhibition of dihydropyrimidine dehydrogenase (DPD). Sixty-three patients with measurable metastatic colorectal carcinoma were enrolled into the study. None of the patients had received prior chemotherapy except for adjuvant setting. S-1 was administered orally twice daily at a standard dose of 80 mg m–2day–1for 28 days followed by a 14-day rest. This agent is continued until disease progression, unaccepted toxicity, or patient refusal. Twenty-two (35%) of the 62 eligible patients achieved PR with a 95% confidence interval of 25–48%. Five of the 10 patients with a history of adjuvant chemotherapy achieved partial remission. The median survival time was 12 months. Major adverse reactions included myelosuppressive and gastrointestinal toxicities, though their incidence of grade 3 or 4 being 13% in neutropenia and less than 10% in the others. None of the 53 patients treated as outpatients required hospitalization due to adverse reactions: These results suggest that S-1 achieves similar responses to those of infusional 5-FU plus leucovorin and shows the potential of another biochemical modulation with easily manageable toxicity. © 2000 Cancer Research Campaig

    Feynman diagrams versus Fermi-gas Feynman emulator

    Get PDF
    Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics

    Pair excitations and parameters of state of imbalanced Fermi gases at finite temperatures

    Full text link
    The spectra of low-lying pair excitations for an imbalanced two-component superfluid Fermi gas are analytically derived within the path-integral formalism taking into account Gaussian fluctuations about the saddle point. The spectra are obtained for nonzero temperatures, both with and without imbalance, and for arbitrary interaction strength. On the basis of the pair excitation spectrum, we have calculated the thermodynamic parameters of state of cold fermions and the first and second sound velocities. The parameters of pair excitations show a remarkable agreement with the Monte Carlo data and with experiment.Comment: 14 pages, 5 figure

    Measurement of the cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight over Antarctica

    Full text link
    The energy spectrum of cosmic-ray antiprotons from 0.17 to 3.5 GeV has been measured using 7886 antiprotons detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been investigated by comparing measured and calculated antiproton spectra. BESS-Polar II data show no evidence of primary antiprotons from evaporation of primordial black holes.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Exploring the Thermodynamics of a Universal Fermi Gas

    Full text link
    From sand piles to electrons in metals, one of the greatest challenges in modern physics is to understand the behavior of an ensemble of strongly interacting particles. A class of quantum many-body systems such as neutron matter and cold Fermi gases share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit [1,2]. It is then possible to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap [3-5], making it difficult to compare with many-body theories developed for uniform gases. Here we develop a general method that provides for the first time the equation of state of a uniform gas, as well as a detailed comparison with existing theories [6,14]. The precision of our equation of state leads to new physical insights on the unitary gas. For the unpolarized gas, we prove that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2% accuracy and it extends the work of [15] on the phase diagram to a new regime of precision. We show in particular that, despite strong correlations, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure

    Interlayer Coherence in the ν=1\nu=1 and ν=2\nu=2 Bilayer Quantum Hall States

    Full text link
    We have measured the Hall-plateau width and the activation energy of the bilayer quantum Hall (BLQH) states at the Landau-level filling factor ν=1\nu=1 and 2 by tilting the sample and simultaneously changing the electron density in each quantum well. The phase transition between the commensurate and incommensurate states are confirmed at ν=1\nu =1 and discovered at ν=2\nu =2. In particular, three different ν=2\nu =2 BLQH states are identified; the compound state, the coherent commensurate state, and the coherent incommensurate state.Comment: 4 pages including 5 figure
    • …
    corecore