14 research outputs found

    AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells

    Get PDF
    The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na+) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na+ and K+ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K+ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na+ over K+ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na+ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na+ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na+ channel transport properties

    Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants

    Get PDF

    Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice

    Full text link

    Long-distance transporters of inorganic nutrients in plants

    Get PDF
    In plants, long-distance transport of inorganic nutrients is important for mineral nutrition, ion homeostasis, nutrient recycling, and the detoxification of toxic or excess inorganic ions. Here, we review information on the transporters involved in the loading/unloading of inorganic nutrients to and from the vascular bundle. We also describe the methods used to obtain such information.X118sciescopuskc

    Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene

    No full text
    The ability of wheat to maintain a low sodium concentration ([Na+]) in leaves correlates with improved growth under saline conditions1,2. This trait, termed Na+ exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat3,4. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na+ exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na+] (ref. 5). Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na+-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na+ from the xylem and reduce transport of Na+ to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na+] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.Rana Munns, Richard A. James, Bo Xu, Asmini Athman, Simon J. Conn, Charlotte Jordans, Caitlin S. Byrt, Ray A. Hare, Stephen D. Tyerman, Mark Tester, Darren Plett and Matthew Gilliha
    corecore