459 research outputs found

    Inhomogeneous CuO_{6} Tilt Distribution and Charge/Spin Correlations in La_{2-x-y}Nd_{y}Sr_{x}CuO$_{4} around commensurate hole concentration

    Full text link
    Phononic and magnetic Raman scattering are studied in La2xy_{2-x-y}Ndy_{y}Srx_{x}CuO4_{4} with three doping concentrations: x ~ 1/8, y = 0; x ~ 1/8, y = 0.4; and x = 0.01, y = 0. We observe strong disorder in the tilt pattern of the CuO_{6} octahedra in both the orthorhombic and tetragonal phases which persist down to 10 K and are coupled to bond disorder in the cation layers around 1/8 doping independent of Nd concentration. The weak magnitude of existing charge/spin modulations in the Nd doped structure does not allow us to detect the specific Raman signatures on lattice dynamics or two-magnon scattering around 2200 cm-1.Comment: to be published in Phys. Rev.

    Complete solution for unambiguous discrimination of three pure states with real inner products

    Get PDF
    Complete solutions are given in a closed analytic form for unambiguous discrimination of three general pure states with real mutual inner products. For this purpose, we first establish some general results on unambiguous discrimination of n linearly independent pure states. The uniqueness of solution is proved. The condition under which the problem is reduced to an (n-1)-state problem is clarified. After giving the solution for three pure states with real mutual inner products, we examine some difficulties in extending our method to the case of complex inner products. There is a class of set of three pure states with complex inner products for which we obtain an analytical solution.Comment: 13 pages, 3 figures, presentation improved, reference adde

    Reexamination of optimal quantum state estimation of pure states

    Full text link
    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by M. Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVM using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independent of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.Comment: v3(journal version): title changed, presentation improve

    Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs

    Full text link
    We discovered "stripe" patterns of trimerization-ferroelectric domains in hexagonal REMnO3 (RE=Ho, ---, Lu) crystals (grown below ferroelectric transition temperatures (Tc), reaching up to 1435 oC), in contrast with the vortex patterns in YMnO3. These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below Tc, but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross Tc even though the phase transition appears not to be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek Mechanism for trapped topological defects

    Locality and nonlocality in quantum pure-state identification problems

    Full text link
    Suppose we want to identify an input state with one of two unknown reference states, where the input state is guaranteed to be equal to one of the reference states. We assume that no classical knowledge of the reference states is given, but a certain number of copies of them are available instead. Two reference states are independently and randomly chosen from the state space in a unitary invariant way. This is called the quantum state identification problem, and the task is to optimize the mean identification success probability. In this paper, we consider the case where each reference state is pure and bipartite, and generally entangled. The question is whether the maximum mean identification success probability can be attained by means of a local operations and classical communication (LOCC) measurement scheme. Two types of identification problems are considered when a single copy of each reference state is available. We show that a LOCC scheme attains the globally achievable identification probability in the minimum-error identification problem. In the unambiguous identification problem, however, the maximal success probability by means of LOCC is shown to be less than the globally achievable identification probability.Comment: 11 pages, amalgamation of arXiv:0712.2906 and arXiv:0801.012

    Unambiguous pure state identification without classical knowledge

    Get PDF
    We study how to unambiguously identify a given quantum pure state with one of the two reference pure states when no classical knowledge on the reference states is given but a certain number of copies of each reference quantum state are presented. By the unambiguous identification, we mean that we are not allowed to make a mistake but our measurement can produce an inconclusive result. Assuming the two reference states are independently distributed over the whole pure state space in a unitary invariant way, we determine the optimal mean success probability for an arbitrary number of copies of the reference states and a general dimension of the state space. It is explicitly shown that the obtained optimal mean success probability asymptotically approaches that of the unambiguous discrimination as the number of the copies of the reference states increases.Comment: v3: 8 pages, minor corrections, journal versio

    Conduction of topologically-protected charged ferroelectric domain walls

    Full text link
    We report on the observation of nanoscale conduction at ferroelectric domain walls in hexagonal HoMnO3 protected by the topology of multiferroic vortices using in situ conductive atomic force microscopy, piezoresponse force microscopy, and kelvin-probe force microscopy at low temperatures. In addition to previously observed Schottky-like rectification at low bias [Phys. Rev. Lett., 104, 217601 (2010)], conductance spectra reveal that negatively charged tail-to-tail walls exhibit enhanced conduction at high forward bias, while positively charged head-to-head walls exhibit suppressed conduction at high reverse bias. Our results pave the way for understanding the semiconducting properties of the domains and domain walls in small-gap ferroelectrics.Comment: 8 pages, 4 figure

    Epitaxial checkerboard arrangement of nanorods in ZnMnGaO4 films studied by x-ray diffraction

    Full text link
    The intriguing nano-structural properties of a ZnMnGaO4 film epitaxially grown on MgO (001) substrate have been investigated using synchrotron radiation-based x-ray diffraction. The ZnMnGaO4 film consisted of a self-assembled checkerboard (CB) structure with perfectly aligned and regularly spaced vertical nanorods. The lattice parameters of the orthorhombic and rotated tetragonal phases of the CB structure were analyzed using H-K, H-L, and K-L cross sections of the reciprocal space maps measured around various symmetric and asymmetric reflections of the spinel structure. We demonstrate that the symmetry of atomic displacements at the phases boundaries provides the means for coherent coexistence of two domains types within the volume of the film

    Anionic Depolymerization Transition in IrTe2

    Get PDF
    Selenium substitution drastically increases the transition temperature of iridium ditelluride (IrTe2) to a diamagnetic superstructure from 278 to 560 K. Transmission electron microscopy experiments revealed that this enhancement is accompanied by the evolution of nonsinusoidal structure modulations from q=1/5(101̄) to q=1/6(101̄) types. These comprehensive results are consistent with the concept of the destabilization of polymeric Te-Te bonds at the transition, the temperature of which is increased by chemical and hydrostatic pressure and by the substitution of Te with the more electronegative Se. This temperature-induced depolymerization transition in IrTe2 is unique in crystalline inorganic solids.open281

    Observation of Macroscopic Structural Fluctuations in bcc Solid 4He

    Full text link
    We report neutron diffraction studies of low density bcc and hcp solid 4He. In the bcc phase, we observed a continuous dynamical behaviour involving macroscopic structural changes of the solid. The dynamical behaviour takes place in a cell full of solid, and therefore represents a solidsolid transformation. The structural changes are consistent with a gradual rotation of macroscopic grains separated by low angle grain boundaries. We suggest that these changes are triggered by random momentary vibrations of the experimental system. An analysis of Laue diffraction patterns indicates that in some cases these structural changes, once initiated by a momentary impulse, seem to proceed at a constant rate over times approaching an hour. The energy associated with these macroscopic changes appears to be on the order of kT. Under similar conditions (temperature and pressure), these effects were absent in the hcp phase.Comment: 14 pages, 6 figure, accepted for PR
    corecore