8,191 research outputs found

    A Bilocal Field Theory in Four Dimensions

    Full text link
    A bilocal field theory having M\"{o}bius gauge invariance is proposed. In four dimensions there exists a zero momentum state of the first quantized model, which belongs to a non-trivial BRS cohomology class. A field theory lagrangian having a gauge invariance only in four dimensions is constructed.Comment: 13 pages, TEP-9R, LaTe

    Non-compact Mirror Bundles and (0,2) Liouville Theories

    Full text link
    We study (0,2) deformations of N=2 Liouville field theory and its mirror duality. A gauged linear sigma model construction of the ultraviolet theory connects (0,2) deformations of Liouville field theory and (0,2) deformations of N=2 SL(2,R)/U(1) coset model as a mirror duality. Our duality proposal from the gauged linear sigma model completely agrees with the exact CFT analysis. In the context of heterotic string compactifications, the deformation corresponds to the introduction of a non-trivial gauge bundle. This non-compact Landau-Ginzburg construction yields a novel way to study the gauge bundle moduli for non-compact Calabi-Yau manifolds.Comment: 34 page

    Diameter dependence of ferromagnetic spin moment in Au nanocrystals

    Get PDF
    Au nanoparticles exhibit ferromagnetic spin polarization and show diameter dependence in magnetization. The magnetic moment per Au atom in the particle attains its maximum value at a diameter of about 3 nanometer (nm) in the Magnetization-Diameter curve. Because Au metal is a typical diamagnetic material, its ferromagnetic polarization mechanism is thought to be quite different from the ferromagnetism observed in transition metals. The size effect strongly suggests the existence of some spin correlation effect at the nanoscale. The so-called ``Fermi hole effect'' is the most probable one given in the free electron gas system. Ferromagnetism in Au nanoparticles is discussed using this model.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    Dipole trap model for the metallic state in gated silicon-inversion layers

    Full text link
    In order to investigate the metallic state in high-mobility Si-MOS structures, we have further developed and precised the dipole trap model which was originally proposed by B.L. Altshuler and D.L. Maslov [Phys. Rev. Lett.\ 82, 145 (1999)]. Our additional numerical treatment enables us to drop several approximations and to introduce a limited spatial depth of the trap states inside the oxide as well as to include a distribution of trap energies. It turns out that a pronounced metallic state can be caused by such trap states at appropriate energies whose behavior is in good agreement with experimental observations.Comment: 16 pages, 10 figures, submitte

    N=2 Supersymmetric Sigma Models and D-branes

    Full text link
    We study D-branes of N=2 supersymmetric sigma models. Supersymmetric nonlinear sigma models with 2-dimensional target space have D0,D1,D2-branes, which are realized as A-,B-type supersymmetric boundary conditions on the worldsheet. When we embed the models in the string theory, the Kahler potential is restricted and leads to a 2-dim black hole metric with a dilaton background. The D-branes in this model are susy cycles and consistent with the analysis of conjugacy classes. The generalized metrics with U(n) isometry is proposed and dynamics on them are realized by linear sigma models. We investigate D-branes of the linear sigma models and compare the results with those in the nonlinear sigma models.Comment: 23 pages, 5 figure

    Preliminary Results from Recent Measurements of the Antiprotonic Helium Hyperfine Structure

    Full text link
    We report on preliminary results from a systematic study of the hyperfine (HF) structure of antiprotonic helium. This precise measurement which was commenced in 2006, has now been completed. Our initial analysis shows no apparent density or power dependence and therefore the results can be averaged. The statistical error of the observable M1 transitions is a factor of 60 smaller than that of three body quantum electrodynamic (QED) calculations, while their difference has been resolved to a precision comparable to theory (a factor of 10 better than our first measurement). This difference is sensitive to the antiproton magnetic moment and agreement between theory and experiment would lead to an increased precision of this parameter, thus providing a test of CPT invariance.Comment: 6 pages, 4 figure

    N=2 Liouville Theory with Boundary

    Full text link
    We study N=2 Liouville theory with arbitrary central charge in the presence of boundaries. After reviewing the theory on the sphere and deriving some important structure constants, we investigate the boundary states of the theory from two approaches, one using the modular transformation property of annulus amplitudes and the other using the bootstrap of disc two-point functions containing degenerate bulk operators. The boundary interactions describing the boundary states are also proposed, based on which the precise correspondence between boundary states and boundary interactions is obtained. The open string spectrum between D-branes is studied from the modular bootstrap approach and also from the reflection relation of boundary operators, providing a consistency check for the proposal.Comment: 1+48 pages, no figure. typos corrected and references added. the version to appear in JHE

    D-brane Categories for Orientifolds -- The Landau-Ginzburg Case

    Get PDF
    We construct and classify categories of D-branes in orientifolds based on Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet parity action on the matrix factorizations plays the key role. This provides all the requisite data for an orientifold construction after embedding in string theory. One of our main results is a computation of topological field theory correlators on unoriented worldsheets, generalizing the formulas of Vafa and Kapustin-Li for oriented worldsheets, as well as the extension of these results to orbifolds. We also find a doubling of Knoerrer periodicity in the orientifold context.Comment: 45 pages, 6 figure

    Non-Supersymmetric Seiberg Duality, Orientifold QCD and Non-Critical Strings

    Full text link
    We propose an electric-magnetic duality and conjecture an exact conformal window for a class of non-supersymmetric U(N_c) gauge theories with fermions in the (anti)symmetric representation of the gauge group and N_f additional scalar and fermion flavors. The duality exchanges N_c with N_f -N_c \mp 4 leaving N_f invariant, and has common features with Seiberg duality in N=1 SQCD with SU or SO/Sp gauge group. At large N the duality holds due to planar equivalence with N=1 SQCD. At finite N we embed these gauge theories in a setup with D-branes and orientifolds in a non-supersymmetric, but tachyon-free, non-critical type 0B string theory and argue in favor of the duality in terms of boundary and crosscap state monodromies as in analogous supersymmetric situations. One can verify explicitly that the resulting duals have matching global anomalies. Finally, we comment on the moduli space of these gauge theories and discuss other potential non-supersymmetric examples that could exhibit similar dualities.Comment: 45 pages, 1 figur
    • …
    corecore