13 research outputs found

    Foetal periventricular leucomatacia as the main lesion in abortions duri::g tho acute phase of ovine toxoplasmosis

    Get PDF
    Toxoplasmosis is a major opportunistic disease of immunocompromised patients. lt also represents a serious threat during pregnancy, causing severe foetal abnormalities or potentially leads to problems in childhood or later adult life

    Crosstalk between Neospora caninum and the bovine host at the maternal-foetal interface determines the outcome of infection

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.[EN]Neospora caninum is an apicomplexan cyst-forming parasite that is considered one of the main causes of abortion. The pathogenic mechanisms associated with parasite virulence at the maternal-foetal interface that are responsible for the outcome of infection are largely unknown. Here, utilizing placentomes from cattle experimentally infected with high-virulence (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates, we studied key elements of the innate and adaptive immune responses, as well as components of the extracellular matrix (ECM), at 10 and 20 days post-infection (dpi). The low-virulence isolate elicited a robust immune response characterized by upregulation of genes involved in pathogen recognition, chemokines and pro-inflammatory cytokines, crucial for its adequate control. In addition, Nc-Spain1H triggered the expression of anti-inflammatory cytokines and other mechanisms implicated in the maintenance of ECM integrity to ensure foetal survival. In contrast, local immune responses were initially (10 dpi) impaired by Nc-Spain7, allowing parasite multiplication. Subsequently (20 dpi), a predominantly pro-inflammatory Th1-based response and an increase in leucocyte infiltration were observed. Moreover, Nc-Spain7-infected placentomes from animals carrying non-viable foetuses exhibited higher expression of the IL-8, TNF-α, iNOS and SERP-1 genes and lower expression of the metalloproteases and their inhibitors than Nc-Spain7-infected placentomes from animals carrying viable foetuses. In addition, profound placental damage characterized by an alteration in the ECM organization in necrotic foci, which could contribute to foetal death, was found. Two different host-parasite interaction patterns were observed at the bovine placenta as representative examples of different evolutionary strategies used by this parasite for transmission to offspring.SIThis work was supported by the Spanish Ministry of Economy and Competitiveness (AGL2013-44694-R and AGL2016-75935-C2-1-R) and the Community of Madrid (PLATESA2-CM P2018/BAA-4370). Laura Jiménez-Pelayo was financially supported by a fellowship from the University Complutense of Madrid (including two research stays in 2017 and 2018) and Marta García-Sánchez was financially supported through a grant from the Spanish Ministry of Economy and Competitiveness (BES-2014-070723). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Modeling the Ruminant Placenta-Pathogen Interactions in Apicomplexan Parasites: Current and Future Perspectives

    No full text
    Author Contributions All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.Neospora caninum and Toxoplasma gondii are one of the main concerns of the livestock sector as they cause important economic losses in ruminants due to the reproductive failure. It is well-known that the interaction of these parasites with the placenta determines the course of infection, leading to fetal death or parasite transmission to the offspring. However, to advance the development of effective vaccines and treatments, there are still important gaps on knowledge on the placental host-parasite interactions that need to be addressed. Ruminant animal models are still an indispensable tool for providing a global view of the pathogenesis, lesions, and immune responses, but their utilization embraces important economic and ethics restrictions. Alternative in vitro systems based on caruncular and trophoblast cells, the key cellular components of placentomes, have emerged in the last years, but their use can only offer a partial view of the processes triggered after infection as they cannot mimic the complex placental architecture and neglect the activity of resident immune cells. These drawbacks could be solved using placental explants, broadly employed in human medicine, and able to preserve its cellular architecture and function. Despite the availability of such materials is constrained by their short shelf-life, the development of adequate cryopreservation protocols could expand their use for research purposes. Herein, we review and discuss existing (and potential) in vivo, in vitro, and ex vivo ruminant placental models that have proven useful to unravel the pathogenic mechanisms and the host immune responses responsible for fetal death (or protection) caused by neosporosis and toxoplasmosis.Ministerio de Ciencia e InnovaciónComunidad de Madrid (P2018/BAA-4370; 2018T2/BIO10170)Universidad Complutense de Madrid (PR65/19-22457)Depto. de Sanidad AnimalFac. de VeterinariaTRUEpu

    Ruminants are not a reservoir of enteroaggregative Escherichia coli

    No full text
    Sustainable Development Goals mapped to this document: Affordable and clean energy. Goal 7.Enteroaggregative Escherichia coli (EAEC) causes both acute and persistent diarrhoea among children and adults in developing and developed countries. In addition, the large outbreak of food-borne illness in Europe in the summer of 2011 was caused by a verotoxin-producing EAEC O104:H4 strain. The public health threat posed by EAEC makes it important to identify animal reservoirs that might lead to epidemics in humans. Based on only one study in sheep and a few in cattle, researchers have suggested that EAEC are not found in ruminants. To expand the available data on this question, the present study applied polymerase chain reaction to faecal samples from 920 cattle, sheep and goats to detect EAEC. None of the samples tested positive for any of the EAEC genes tested, suggesting that goats, like cattle and sheep, are unlikely to be a significant reservoir of EAEC.Universidad Complutense de Madrid-Banco SantanderGR3/14Depto. de Sanidad AnimalFac. de VeterinariaTRUEpu

    Whole-transcriptome analysis reveals virulence-specific pathogen−host interactions at the placenta in bovine neosporosis

    No full text
    Research on bovine neosporosis has achieved relevant milestones, but the mechanisms underlying the occurrence of foetal death or protection against foetal death remain unclear. In a recent study, placentas from heifers challenged with the high-virulence isolate Nc-Spain7 exhibited focal necrosis and inflammatory infiltrates as soon as 10 days post-infection (dpi), although parasite detection was minimal. These lesions were more frequent at 20 dpi, coinciding with higher rates of parasite detection and the occurrence of foetal death in some animals. In contrast, such lesions were not observed in placentas from animals infected with the low-virulence isolate Nc-Spain1H, where the parasite was detected only in placenta from one animal at 20 dpi. This work aimed to study which mechanisms are triggered in the placentas (caruncles and cotyledons) of these pregnant heifers at early stages of infection (10 and 20 dpi) through whole-transcriptome analysis. In caruncles, infection with the high-virulence isolate provoked a strong proinflammatory response at 10 dpi. This effect was not observed in heifers infected with the low-virulence isolate, where IL-6/JAK/STAT3 signalling and TNF-alpha signalling via NF-κB pathways were down-regulated. Interestingly, the expression of E2F target genes, related to restraining the inflammatory response, was higher in these animals. At 20 dpi, more pronounced proinflammatory gene signatures were detectable in heifers infected with the high-virulence isolate, being more intense in heifers carrying dead fetuses. However, the low-virulence isolate continued without activating the proinflammatory response. In cotyledons, the response to infection with the high-virulence isolate was similar to that observed in caruncles; however, the low-virulence isolate induced mild proinflammatory signals at 20 dpi. Finally, a deconvolutional analysis of gene signatures from both placentome tissues revealed a markedly higher fraction of activated natural killers, M1 macrophages and CD8+ T cells for the high-virulence isolate. Therefore, our transcriptomic analysis supports the hypothesis that an intense immune response probably triggered by parasite multiplication could be a key contributor to abortion. Further studies are required to determine the parasite effectors that govern the distinct interactions of high- and low-virulence isolates with the host, which could help elucidate the molecular processes underlying the pathogenesis of neosporosis in cattle.Ministerio de Ciencia, Innovación y Universidades (España)Comunidad de MadridDepto. de Sanidad AnimalSección Deptal. de Bioquímica y Biología Molecular (Veterinaria)Fac. de VeterinariaTRUEpu

    Characterization of Neospora caninum virulence factors NcGRA7 and NcROP40 in bovine target cells

    No full text
    Bovine neosporosis is one of the major causes of reproductive failure in cattle worldwide, and differences in virulence between isolates have been widely shown. However, the molecular basis and mechanisms underlying virulence in Neospora caninum are mostly unknown. Recently, we demonstrated the involvement of NcGRA7 and NcROP40 in the virulence of N. caninum in a pregnant murine model using single knockout mutants in these genes generated by CRISR/Cas9 technology. In this study, the role of these proteins was investigated in two in vitro models using bovine target cells: trophoblast (F3 cell line) and monocyte-derived macrophages (BoMØ). The proliferation capacity of the single knockout mutant parasites was compared to the wild-type strain, the Nc-Spain7 isolate, using both cell populations. For the bovine trophoblast, no differences were observed in the growth of the defective parasites compared to the wild-type strain, neither in the proliferation kinetics nor in the competition assay. However, in naïve BoMØ, a significant decrease in the proliferation capacity of the mutant parasites was observed from 48 h pi onwards. Stimulation of BoMØ with IFN-γ showed a similar inhibition of tachyzoite growth in defective and wild-type strains in a dose-dependent manner. Finally, BoMØ infected with knockout parasites showed higher expression levels of TLR3, which is involved in pathogen recognition. These results suggest that NcGRA7 and NcROP40 may be involved in the manipulation of innate immune defense mechanisms against neosporosis and confirm the usefulness of the BoMØ model for the evaluation of N. caninum virulence mechanisms. However, the specific functions of these proteins remain unknown, opening the way for future research.Depto. de Sanidad AnimalFac. de VeterinariaTRUEpu

    Prevalence of Bovine Genital Campylobacteriosis, Associated Risk Factors and Spatial Distribution in Spanish Beef Cattle Based on Veterinary Laboratory Database Records

    No full text
    Bovine genital campylobacteriosis (BGC) is a sexually transmitted disease that causes early reproductive failure in natural breeding cattle that are managed extensively. The aim of this study was to assess the BGC prevalence in Spain from 2011 to 2019 using data collected cross-sectionally from the diagnostic reports issued by the SALUVET veterinary diagnostic laboratory from a total of 5,182 breeding bulls from 1,950 herds managed under "dehesa" systems (large herds within fenced pastures and all-year breeding season) or mountain systems (smaller herds with seasonal breeding management and grazing in communal mountain pastures). Infection was detected by PCR in 7.7 and 12.2% of the bulls and herds tested, respectively. The "dehesa" herd management system (OR = 2.078, P = < 0.001, 95% CI = 1.55-1.77), bovine trichomonosis status of the herd (OR = 1.606, P = 0.004, 95% CI = 1.15-2.22), and bulls ≥3 years old (OR = 1.392, P = 0.04, 95% CI = 1.01-1.92) were identified as risk factors associated with Campylobacter fetus venerealis infection. We also studied the high-risk areas for circulation of the infection in extensive beef cattle herds in Spain, showing four significant clusters in "dehesa" areas in the south-western provinces of the country and a fifth cluster located in a mountain area in northern Spain. The results obtained in the present study indicate that BGC is endemic and widely distributed in Spanish beef herds. Specifically, "dehesa" herds are at greater risk for introduction of Cfv based on relatively high local prevalence of the infection and the use of specific management practices.Depto. de Sanidad AnimalFac. de VeterinariaTRUEpu

    Transcriptomics of Besnoitia besnoiti-Infected Fibroblasts Reveals Hallmarks of Early Fibrosis and Cancer Progression

    No full text
    Author contributions: G.Á.-G., I.F. and L.M.O.-M. conceived the study and acquired funding for the study; M.F.-Á., A.J.-M. and P.H. carried out the experimental assays; M.F.-Á., P.A.L., A.H.-L. and F.H.-L. performed the bioinformatic and statistical analyses and prepared the figures and tables. M.F.-Á., G.Á.-G. and P.H. drafted the original manuscript. All authors have read and agreed to the published version of the manuscript.Endothelial injury, inflammatory infiltrate and fibrosis are the predominant lesions in the testis of bulls with besnoitiosis that may result in sterility. Moreover, fibroblasts, which are key players in fibrosis, are parasite target cells in a Besnoitia besnoiti chronic infection. This study aimed to decipher the molecular basis that underlies a drift toward fibrosis during the disease progression. Transcriptomic analysis was developed at two times post-infection (p.i.), representative of invasion (12 h p.i.) and intracellular proliferation (32 h p.i.), in primary bovine aorta fibroblasts infected with B. besnoiti tachyzoites. Once the enriched host pathways were identified, we studied the expression of selected differentially expressed genes (DEGs) in the scrotal skin of sterile infected bulls. Functional enrichment analyses of DEGs revealed shared hallmarks of cancer and early fibrosis. Biomarkers of inflammation, angiogenesis, cancer, and MAPK signaling stood out at 12 h p.i. At 32 h p.i., again MAPK and cancer pathways were enriched together with the PI3K–AKT pathway related to cell proliferation. Some DEGs were also regulated in the skin samples of naturally infected bulls (PLAUR, TGFβ1, FOSB). We have identified potential biomarkers and host pathways regulated during fibrosis that may hold prognostic significance and could emerge as potential therapeutic targets.Spanish Ministry of Economy and CompetitivenessCommunity of MadridComplutense University of MadridUniversity of Murcia through the Margarita Salas Program of Requalification of the Spanish University System (Spanish Ministry of Universities) financed by the European Union—NextGenerationEUDepto. de Sanidad AnimalFac. de VeterinariaTRUEpu

    Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: the role of the pathoantigenic HISA70 DNA vaccine

    No full text
    Abstract: Leishmania major is the major cause of cutaneous leishmaniosis (CL) outside of the Americas. In the present study we have cloned six Leishmania genes (H2A, H2B, H3, H4, A2 and HSP70) into the eukaryotic expression vector pCMVβ-m2a, resulting in pCMV-HISA70m2A, which encodes all six pathoantigenic proteins as a single polyprotein. This expression plasmid has been evaluated as a novel vaccine candidate in the BALB/c mouse model of CL. The DNA vaccine shifted the immune response normally induced byL. majorinfection away from a Th2-specific pathway to one of basal susceptibility. Immunization with pCMV-HISA70m2A dramatically reduced footpad lesions and lymph node parasite burdens relative to infected control mice. Complete absence of visceral parasite burden was observed in all 12 immunized animals but not in any of the 24 control mice. Moreover, vaccinated mice produced large amounts of IFN-γ, IL-17 and NO at 7 weeks post-infection (pi), and they showed lower arginase activity at the site of infection, lower IL-4 production and a weaker humoral immune response than infected control mice. Taken together, these results demonstrate the ability of the HISA70 vaccine to shift the murine immune response to L. major infection away from an undesirable, Th2-specific pathway to a less susceptible-like pathway involving Th1 and Th17 cytokine profiles.Ministerio de Educación y CienciaBanco Santander-Universidad Complutense de MadridDepto. de Bioquímica y Biología MolecularFac. de MedicinaTRUEpu

    Immune response profile of caruncular and trophoblast cell lines infected by high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates of Neospora caninum

    No full text
    Bovine neosporosis, one of the main causes of reproductive failure in cattle worldwide, poses a challenge for the immune system of pregnant cows. Changes in the Th-1/Th-2 balance in the placenta during gestation have been associated with abortion. Cotyledon and caruncle cell layers form the maternal-foetal interface in the placenta and are able to recognize and induce immune responses against Neospora caninum among other pathogens. The objective of the present work was to elucidate the immunomodulation produced by high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates of N. caninum in bovine trophoblast (F3) and caruncular cells (BCEC-1) at early and late points after infection. Variations in the mRNA expression levels of toll-like receptor-2 (TLR-2), Th1 and Th2 cytokines (IL-4, IL-10, IL-8, IL-6, IL-12p40, IL-17, IFN-γ, TGF-β1, TNF-α), and endothelial adhesion molecules (ICAM-1 and VCAM-1) were investigated by RT-qPCR, and protein variations in culture supernatants were investigated by ELISA. Results: A similar pattern of modulation was found in both cell lines. The most upregulated cytokines in infected cells were pro-inflammatory TNF-α (P < 0.05-0.0001) and IL-8 (P < 0.05-0.001) whereas regulatory IL-6 (P < 0.05-0.001) and TGF-β1 (P < 0.05-0.001) were downregulated in both cell lines. The measurement of secreted IL-6, IL-8 and TNF-α confirmed the mRNA expression level results. Differences between isolates were found in the mRNA expression levels of TLR-2 (P < 0.05) in both cell lines and in the mRNA expression levels (P < 0.05) and protein secretion of TNF-α (P < 0.05), which were higher in the trophoblast cell line (F3) infected with the low-virulence isolate Nc-Spain1H. Conclusions: Neospora caninum infection is shown to favor a pro-inflammatory response in placental target cells in vitro. In addition, significant immunomodulation differences were observed between high- and low-virulence isolates, which would partially explain the differences in virulence.Ministerio de Economía y CompetitividadComunidad de MadridDepto. de Sanidad AnimalFac. de VeterinariaTRUEpu
    corecore