566 research outputs found

    The fluid-fluid interface in a model colloid-polymer mixture: Application of grand canonical Monte Carlo to asymmetric binary mixtures

    Full text link
    We present a Monte Carlo method to simulate asymmetric binary mixtures in the grand canonical ensemble. The method is used to study the colloid-polymer model of Asakura and Oosawa. We determine the phase diagram of the fluid-fluid unmixing transition and the interfacial tension, both at high polymer density and close to the critical point. We also present density profiles in the two-phase region. The results are compared to predictions of a recent density functional theory.Comment: 4 pages, 4 figure

    Electrophoretic Properties of Highly Charged Colloids: A Hybrid MD/LB Simulation Study

    Full text link
    Using computer simulations, the electrophoretic motion of a positively charged colloid (macroion) in an electrolyte solution is studied in the framework of the primitive model. Hydrodynamic interactions are fully taken into account by applying a hybrid simulation scheme, where the charged ions (i.e. macroion and electrolyte), propagated via molecular dynamics (MD), are coupled to a Lattice Boltzmann (LB) fluid. In a recent experiment it was shown that, for multivalent salt ions, the mobility μ\mu initially increases with charge density σ\sigma, reaches a maximum and then decreases with further increase of σ\sigma. The aim of the present work is to elucidate the behaviour of μ\mu at high values of σ\sigma. Even for the case of monovalent microions, we find a decrease of μ\mu with σ\sigma. A dynamic Stern layer is defined that includes all the counterions that move with the macroion while subject to an external electrical field. The number of counterions in the Stern layer, q0q_0, is a crucial parameter for the behavior of μ\mu at high values of σ\sigma. In this case, the mobility μ\mu depends primarily on the ratio q0/Qq_0/Q (with QQ the valency of the macroion). The previous contention that the increase in the distortion of the electric double layer (EDL) with increasing σ\sigma leads to the lowering of μ\mu does not hold for high σ\sigma. In fact, we show that the deformation of the EDL decreases with increase of σ\sigma. The role of hydrodynamic interactions is inferred from direct comparisons to Langevin simulations where the coupling to the LB fluid is switched off. Moreover, systems with divalent counterions are considered. In this case, at high values of σ\sigma the phenomenon of charge inversion is found.Comment: accepted in J. Chem Phys., 10 pages, 9 figure

    Tension and stiffness of the hard sphere crystal-fluid interface

    Full text link
    A combination of fundamental measure density functional theory and Monte Carlo computer simulation is used to determine the orientation-resolved interfacial tension and stiffness for the equilibrium hard-sphere crystal-fluid interface. Microscopic density functional theory is in quantitative agreement with simulations and predicts a tension of 0.66 kT/\sigma^2 with a small anisotropy of about 0.025 kT and stiffnesses with e.g. 0.53 kT/\sigma^2 for the (001) orientation and 1.03 kT/\sigma^2 for the (111) orientation. Here kT is denoting the thermal energy and \sigma the hard sphere diameter. We compare our results with existing experimental findings

    Frequency dependent specific heat of viscous silica

    Full text link
    We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency dependent specific heat c(z) of a liquid. By using an exact transformation formula due to Lebowitz et al., we derive a relation between c(z) and K(t), the autocorrelation function of temperature fluctuations in the microcanonical ensemble. This connection thus allows to determine c(z) from computer simulations in equilibrium, i.e. without an external perturbation. By considering the generalization of K(t) to finite wave-vectors, we derive an expression to determine the thermal conductivity \lambda from such simulations. We present the results of extensive computer simulations in which we use the derived relations to determine c(z) over eight decades in frequency, as well as \lambda. The system investigated is a simple but realistic model for amorphous silica. We find that at high frequencies the real part of c(z) has the value of an ideal gas. c'(\omega) increases quickly at those frequencies which correspond to the vibrational excitations of the system. At low temperatures c'(\omega) shows a second step. The frequency at which this step is observed is comparable to the one at which the \alpha-relaxation peak is observed in the intermediate scattering function. Also the temperature dependence of the location of this second step is the same as the one of the α−\alpha-peak, thus showing that these quantities are intimately connected to each other. From c'(\omega) we estimate the temperature dependence of the vibrational and configurational part of the specific heat. We find that the static value of c(z) as well as \lambda are in good agreement with experimental data.Comment: 27 pages of Latex, 8 figure

    Non-exponential kinetic behavior of confined water

    Full text link
    We present the results of molecular dynamics simulations of SPC/E water confined in a realistic model of a silica pore. The single-particle dynamics have been studied at ambient temperature for different hydration levels. The confinement near the hydrophilic surface makes the dynamic behaviour of the liquid strongly dependent on the hydration level. Upon decrease of the number of water molecules in the pore we observe the onset of a slow dynamics due to the ``cage effect''. The conventional picture of a stochastic single-particle diffusion process thus looses its validity

    Capillary Waves in a Colloid-Polymer Interface

    Full text link
    The structure and the statistical fluctuations of interfaces between coexisting phases in the Asakura-Oosawa (AO) model for a colloid--polymer mixture are analyzed by extensive Monte Carlo simulations. We make use of a recently developed grand canonical cluster move with an additional constraint stabilizing the existence of two interfaces in the (rectangular) box that is simulated. Choosing very large systems, of size LxLxD with L=60 and D=120, measured in units of the colloid radius, the spectrum of capillary wave-type interfacial excitations is analyzed in detail. The local position of the interface is defined in terms of a (local) Gibbs surface concept. For small wavevectors capillary wave theory is verified quantitatively, while for larger wavevectors pronounced deviations show up. For wavevectors that correspond to the typical distance between colloids in the colloid-rich phase, the interfacial fluctuations exhibit the same structure as observed in the bulk structure factor. When one analyzes the data in terms of the concept of a wavevector-dependent interfacial tension, a monotonous decrease of this quantity with increasing wavevector is found. Limitations of our analysis are critically discussed.Comment: 12 pages, 15 figure

    Water adsorption on amorphous silica surfaces: A Car-Parrinello simulation study

    Full text link
    A combination of classical molecular dynamics (MD) and ab initio Car-Parrinello molecular dynamics (CPMD) simulations is used to investigate the adsorption of water on a free amorphous silica surface. From the classical MD SiO_2 configurations with a free surface are generated which are then used as starting configurations for the CPMD.We study the reaction of a water molecule with a two-membered ring at the temperature T=300K. We show that the result of this reaction is the formation of two silanol groups on the surface. The activation energy of the reaction is estimated and it is shown that the reaction is exothermic.Comment: 12 pages, 6 figures, to be published in J. Phys.: Condens. Matte

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    Computer Simulations of Supercooled Liquids and Glasses

    Full text link
    After a brief introduction to the dynamics of supercooled liquids, we discuss some of the advantages and drawbacks of computer simulations of such systems. Subsequently we present the results of computer simulations in which the dynamics of a fragile glass former, a binary Lennard-Jones system, is compared to the one of a strong glass former, SiO_2. This comparison gives evidence that the reason for the different temperature dependence of these two types of glass formers lies in the transport mechanism for the particles in the vicinity of T_c, the critical temperature of mode-coupling theory. Whereas the one of the fragile glass former is described very well by the ideal version of mode-coupling theory, the one for the strong glass former is dominated by activated processes. In the last part of the article we review some simulations of glass formers in which the dynamics below the glass transition temperature was investigated. We show that such simulations might help to establish a connection between systems with self generated disorder (e.g. structural glasses) and quenched disorder (e.g. spin glasses).Comment: 37 pages of Latex, 11 figures, to appear as a Topical Review article in J. Phys.: Condens. Matte
    • …
    corecore