245 research outputs found

    The fluid-fluid interface in a model colloid-polymer mixture: Application of grand canonical Monte Carlo to asymmetric binary mixtures

    Full text link
    We present a Monte Carlo method to simulate asymmetric binary mixtures in the grand canonical ensemble. The method is used to study the colloid-polymer model of Asakura and Oosawa. We determine the phase diagram of the fluid-fluid unmixing transition and the interfacial tension, both at high polymer density and close to the critical point. We also present density profiles in the two-phase region. The results are compared to predictions of a recent density functional theory.Comment: 4 pages, 4 figure

    Bose-representation for a strongly coupled nonequilibrim fermionic superfluid in a time-dependent trap

    Full text link
    Using the functional integral formulation of a nonequilibrium quantum many-body theory we develop a regular description of a Fermi system with a strong attractive interaction in the presence of an external time-dependent potential. In the strong coupling limit this fermionic system is equivalent to a noequilibrium dilute Bose gas of diatomic molecules. We also consider a nonequilibrim strongly coupled Bardeen-Cooper-Schrieffer (BCS) theory and show that it reduces to the full nonlinear time-dependent Gross-Pitaevski (GP) equation, which determines an evolution of the condensate wave function.Comment: RevTeX 4, 6 pages, 2 eps figure

    Frequency dependent specific heat of viscous silica

    Full text link
    We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency dependent specific heat c(z) of a liquid. By using an exact transformation formula due to Lebowitz et al., we derive a relation between c(z) and K(t), the autocorrelation function of temperature fluctuations in the microcanonical ensemble. This connection thus allows to determine c(z) from computer simulations in equilibrium, i.e. without an external perturbation. By considering the generalization of K(t) to finite wave-vectors, we derive an expression to determine the thermal conductivity \lambda from such simulations. We present the results of extensive computer simulations in which we use the derived relations to determine c(z) over eight decades in frequency, as well as \lambda. The system investigated is a simple but realistic model for amorphous silica. We find that at high frequencies the real part of c(z) has the value of an ideal gas. c'(\omega) increases quickly at those frequencies which correspond to the vibrational excitations of the system. At low temperatures c'(\omega) shows a second step. The frequency at which this step is observed is comparable to the one at which the \alpha-relaxation peak is observed in the intermediate scattering function. Also the temperature dependence of the location of this second step is the same as the one of the α\alpha-peak, thus showing that these quantities are intimately connected to each other. From c'(\omega) we estimate the temperature dependence of the vibrational and configurational part of the specific heat. We find that the static value of c(z) as well as \lambda are in good agreement with experimental data.Comment: 27 pages of Latex, 8 figure

    Completeness and Decidability Results for First-order Clauses with Indices

    No full text
    Session: Inference systems (www.cl.cam.ac.uk/~gp351/cade24)International audienceWe define a proof procedure that allows for a limited form of inductive reasoning. The first argument of a function symbol is allowed to belong to an inductive type. We will call such an argument an index. We enhance the standard superposition calculus with a loop detection rule, in order to encode a particular form of mathematical induction. The satisfiability problem is not semi-decidable, but some classes of clause sets are identified for which the proposed procedure is complete and/or terminating

    Matrix controlled channel diffusion of sodium in amorphous silica

    Full text link
    To find the origin of the diffusion channels observed in sodium-silicate glasses, we have performed classical molecular dynamics simulations of Na2_2O--4SiO2_2 during which the mass of the Si and O atoms has been multiplied by a tuning coefficient. We observe that the channels disappear and that the diffusive motion of the sodium atoms vanishes if this coefficient is larger than a threshold value. Above this threshold the vibrational states of the matrix are not compatible with those of the sodium ions. We interpret hence the decrease of the diffusion by the absence of resonance conditions.Comment: 5 pages, 4 figure

    Interaction effects on 2D fermions with random hopping

    Full text link
    We study the effects of generic short-ranged interactions on a system of 2D Dirac fermions subject to a special kind of static disorder, often referred to as ``chiral.'' The non-interacting system is a member of the disorder class BDI [M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996)]. It emerges, for example, as a low-energy description of a time-reversal invariant tight-binding model of spinless fermions on a honeycomb lattice, subject to random hopping, and possessing particle-hole symmetry. It is known that, in the absence of interactions, this disordered system is special in that it does not localize in 2D, but possesses extended states and a finite conductivity at zero energy, as well as a strongly divergent low-energy density of states. In the context of the hopping model, the short-range interactions that we consider are particle-hole symmetric density-density interactions. Using a perturbative one-loop renormalization group analysis, we show that the same mechanism responsible for the divergence of the density of states in the non-interacting system leads to an instability, in which the interactions are driven strongly relevant by the disorder. This result should be contrasted with the limit of clean Dirac fermions in 2D, which is stable against the inclusion of weak short-ranged interactions. Our work suggests a novel mechanism wherein a clean system, initially insensitive to interaction effects, can be made unstable to interactions upon the inclusion of weak static disorder.Comment: 16 pages, 10 figures; References added, figures enlarged; to be published in Phys. Rev.

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    Computer Simulations of Supercooled Liquids and Glasses

    Full text link
    After a brief introduction to the dynamics of supercooled liquids, we discuss some of the advantages and drawbacks of computer simulations of such systems. Subsequently we present the results of computer simulations in which the dynamics of a fragile glass former, a binary Lennard-Jones system, is compared to the one of a strong glass former, SiO_2. This comparison gives evidence that the reason for the different temperature dependence of these two types of glass formers lies in the transport mechanism for the particles in the vicinity of T_c, the critical temperature of mode-coupling theory. Whereas the one of the fragile glass former is described very well by the ideal version of mode-coupling theory, the one for the strong glass former is dominated by activated processes. In the last part of the article we review some simulations of glass formers in which the dynamics below the glass transition temperature was investigated. We show that such simulations might help to establish a connection between systems with self generated disorder (e.g. structural glasses) and quenched disorder (e.g. spin glasses).Comment: 37 pages of Latex, 11 figures, to appear as a Topical Review article in J. Phys.: Condens. Matte

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    Molecular Dynamics Simulations

    Full text link
    A tutorial introduction to the technique of Molecular Dynamics (MD) is given, and some characteristic examples of applications are described. The purpose and scope of these simulations and the relation to other simulation methods is discussed, and the basic MD algorithms are described. The sampling of intensive variables (temperature T, pressure p) in runs carried out in the microcanonical (NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as well as the realization of other ensembles (e.g. the NVT ensemble). For a typical application example, molten SiO2, the estimation of various transport coefficients (self-diffusion constants, viscosity, thermal conductivity) is discussed. As an example of Non-Equilibrium Molecular Dynamics (NEMD), a study of a glass-forming polymer melt under shear is mentioned.Comment: 38 pages, 11 figures, to appear in J. Phys.: Condens. Matte
    corecore