51 research outputs found

    124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p

    Differential binding to human mammary and non-mammary tumors of monoclonal antibodies reactive with carcinoembryonic antigen

    No full text

    Absolute values of ras p21 defined by direct binding liquid competition radioimmunoassays.

    No full text
    Several distinct and high-conserved genes comprise the ras gene family of rodents and humans, i.e., rodent Harvey and Kirsten, and human Harvey, Kirsten and neuroblastoma. Transformation, either by a point-mutation resulting in a change in one amino acid of the 21 kDa ras gene product (p21), or by increased expression of ras p21, has been demonstrated to be mediated by members of this gene family. We report here the development of direct binding liquid competition radioimmunoassays for the detection and quantitation of the ras oncogene and proto-oncogene products. Using these radioimmunoassays and ras p21 purified from Escherichia coli containing the full-length T24 mutant human Harvey ras gene protein product as a standard, we have defined the actual amount of ras p21 per micrograms of total cellular protein, or per cell, in various ras transformed and 'normal' mammalian cell lines. One of the radioimmunoassays developed is group-specific, since the antigenic determinant recognized is shared by both the point-mutated and proto-forms of Harvey, Kirsten and neuroblastoma members of the ras gene family, while the second may be termed type-selective, since it recognizes an antigenic determinant localized primarily on the Harvey ras p21. Both radioimmunoassays are interspecies, since they detect a ras p21 antigenic determinant common to cells of human and rodent origin. These studies thus describe the first means for defining absolute values of any oncogene or proto-oncogene protein product. The assays described, when used in combination with specific c-DNA probes to define specific ras proto-oncogenes or point-mutated oncogenes being expressed, will now permit truly quantitative analyses of ras p21 expression in experimental cell culture systems, animal models and human biopsy material

    Monoclonal antibodies define differential ras gene expression in malignant and benign colonic diseases.

    No full text
    DNAS of some human tumours can transform NIH 3T3 fibroblast cells, thus demonstrating the transforming potential of human ras genes (Hu-rasHa, Hu-rasKi, and Hu-rasN, respectively Harvey, Kirsten and neuroblastoma ras genes). Only a small percentage of a given type of human carcinoma, however, scores positive in this assay system. Activation of ras and subsequent transformation of NIH 3T3 cells are either by a point mutation in the ras gene or enhanced expression of the normal, or proto-onc, ras gene. If the transformation of a given human tumour involves the enhanced expression of the normal or cellular ras gene and the resulting gene product, the tumour DNA would probably score negative in the NIH 3T3 transfection assay. In human colon carcinoma, for example, lesions at position 12 of Hu-rasKi have been found. None of nine colon carcinomas obtained at biopsy, however, contain the ras lesion at this position, using a Hu-rasHa probe; one other colon carcinoma does appear to contain amplified proto-onc ras, and other colon carcinomas do have increased levels of ras RNA. There are at least three explanations for these observations. Either very few colon carcinomas contain point-mutated ras, the lesion in the majority of colon carcinomas is at a position other than 12 or ras activation in many colon carcinomas involves the enhanced expression of either the point-mutated or proto-onc form of a ras gene. We have now used monoclonal antibodies directed against a synthetic peptide reflecting sequences of the human T24 ras gene product to define ras p21 protein expression in a spectrum of colonic disease states. Immunohistochemical analyses of individual cells within tissue sections reveal differences in ras p21 expression in colon carcinomas compared with normal colonic epithelium, benign colon tumours and inflammatory or dysplastic colon lesions. Our data suggest that ras p21 expression is correlated with depth of carcinoma within the bowel wall, and is probably a relatively late event in colon carcinogenesis

    A monoclonal antibody (B72.3) defines pattern of distribution of a novel tumor associated antigen in human mammary carcinoma cell population

    No full text
    corecore