87 research outputs found

    Kinematic discrimination of ataxia in horses is facilitated by blindfolding

    Get PDF
    BACKGROUND: Agreement among experienced clinicians is poor when assessing the presence and severity of ataxia, especially when signs are mild. Consequently, objective gait measurements might be beneficial for assessment of horses with neurological diseases. OBJECTIVES: To assess diagnostic criteria using motion capture to measure variability in spatial gait-characteristics and swing duration derived from ataxic and non-ataxic horses, and to assess if variability increases with blindfolding. STUDY DESIGN: Cross-sectional. METHODS: A total of 21 horses underwent measurements in a gait laboratory and live neurological grading by multiple raters. In the gait laboratory, the horses were made to walk across a runway surrounded by a 12-camera motion capture system with a sample frequency of 240 Hz. They were made to walk normally and with a blindfold in at least three trials each. Displacements of reflective markers on head, fetlock, hoof, fourth lumbar vertebra, tuber coxae and sacrum derived from three to four consecutive strides were processed and descriptive statistics, receiver operator characteristics (ROC) to determine the diagnostic sensitivity, specificity and area under the curve (AUC), and correlation between median ataxia grade and gait parameters were determined. RESULTS: For horses with a median ataxia grade ≥2, coefficient of variation for the location of maximum vertical displacement of pelvic and thoracic distal limbs generated good diagnostic yield. The hoofs of the thoracic limbs yielded an AUC of 0.81 with 64% sensitivity and 90% specificity. Blindfolding exacerbated the variation for ataxic horses compared to non-ataxic horses with the hoof marker having an AUC of 0.89 with 82% sensitivity and 90% specificity. MAIN LIMITATIONS: The low number of consecutive strides per horse obtained with motion capture could decrease diagnostic utility. CONCLUSIONS: Motion capture can objectively aid the assessment of horses with ataxia. Furthermore, blindfolding increases variation in distal pelvic limb kinematics making it a useful clinical tool

    A Pinned Polymer Model of Posture Control

    Full text link
    A phenomenological model of human posture control is posited. The dynamics are modelled as an elastically pinned polymer under the influence of noise. The model accurately reproduces the two-point correlation functions of experimental posture data and makes predictions for the response function of the postural control system. The physiological and clinical significance of the model is discussed.Comment: uuencoded post script file, 17 pages with 3 figure

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Quantitative gait and balance outcomes for ataxia trials: consensus recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers

    Get PDF
    With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes

    In-Motion Balance Recovery of a Humanoid Robot under Severe External Disturbances

    No full text

    Audio-biofeedback improves balance in patients with bilateral vestibular loss

    No full text
    To evaluate the effectiveness of an audio-biofeedback (ABF) system for improving balance in patients with bilateral vestibular loss (BVL)

    Exoskeletons Supporting Postural Balance – The BALANCE Project

    No full text
    • …
    corecore