8 research outputs found

    Comparative Effects of Propylene Oxide, Sodium and Autoclaving on Selected Soil Properties

    Get PDF
    Samples of soil (25 g) were treated with 1 or 2 ml of propylene oxide, 400 or 800 parts/10? of sodium azide, or autoclaved for 1.5 or 3.0 h. Soil sterilization was achieved by the propylene oxide and autoclaving treatments. Sodium azide inhibited the bacteria and actinomycetes and drastically reduced the fungal population. The autoclaving treatment decreased the soil pH 0.2 unit, while propylene oxide and sodium azide treatments increased it 0.5-1.1 units. Extractable manganous—Mn was increased 2- to 3-fold by all treatments except for a 90- to 120-fold increase in an autoclaved soil; extractable Ca was not affected; and the extractable K changes were slight. Total extractable N was increased 10-20 parts/10?, and available P was generally increased by the treatments. Propylene oxide induced the least chemical alterations upon sterilization and is considered an appropriate sterilant to study chemical transformations in soils; but, germination and growth of wheat and alfalfa were retarded in propylene oxide treated soil

    Survival of a Rifampicin-Resistant Pseudomonas fluorescens

    Get PDF
    Pseudomonas fluorescens strain D7 (P.f. D7) is a naturally occurring soil bacterium that shows promise as a biological herbicide to inhibit growth of annual grass weeds, including downy brome (Bromus tectorum L.), in crop- and rangelands. Pseudomonas fluorescens strain D7rif (P.f. D7rif) is a rifampicin-resistant strain of P.f. D7. One of the greatest obstacles to successful biological weed control is survival of the organism under field conditions. Nine soils in the taxonomic order of Mollisols, collected from downy brome-infested areas of the Western and Central United States, were inoculated with P.f. D7rif and incubated in the laboratory to determine the effects of soil type, soil properties, incubation temperature, and soil water potential on survival of P.f. D7rif over 63 days. Silt loam soils from Lind, Washington, and Moro, Oregon, sustained the highest P.f. D7rif populations, and recovery was the lowest from Pendleton, Oregon soil. Survival and recovery of P.f. D7rif varied with soil type and temperature but not with the two soil water potentials tested. After 63 days, P.f. D7rif was recovered at levels greater than log 5.5 colony forming units (CFU) g−1 soil from five of the nine test soils, a level adequate to suppress downy brome under field or range conditions

    Comparative Effects of Propylene Oxide, Sodium and Autoclaving on Selected Soil Properties

    No full text
    Samples of soil (25 g) were treated with 1 or 2 ml of propylene oxide, 400 or 800 parts/10? of sodium azide, or autoclaved for 1.5 or 3.0 h. Soil sterilization was achieved by the propylene oxide and autoclaving treatments. Sodium azide inhibited the bacteria and actinomycetes and drastically reduced the fungal population. The autoclaving treatment decreased the soil pH 0.2 unit, while propylene oxide and sodium azide treatments increased it 0.5-1.1 units. Extractable manganous—Mn was increased 2- to 3-fold by all treatments except for a 90- to 120-fold increase in an autoclaved soil; extractable Ca was not affected; and the extractable K changes were slight. Total extractable N was increased 10-20 parts/10?, and available P was generally increased by the treatments. Propylene oxide induced the least chemical alterations upon sterilization and is considered an appropriate sterilant to study chemical transformations in soils; but, germination and growth of wheat and alfalfa were retarded in propylene oxide treated soil
    corecore