31 research outputs found

    The Role of Radioactivities in Astrophysics

    Full text link
    I present both a history of radioactivity in astrophysics and an introduction to the major applications of radioactive abundances to astronomy

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Lineage marker synchrony in hematopoietic genealogies refutes the PU.1/GATA1 toggle switch paradigm.

    Get PDF
    Molecular regulation of cell fate decisions underlies health and disease. To identify molecules that are active or regulated during a decision, and not before or after, the decision time point is crucial. However, cell fate markers are usually delayed and the time of decision therefore unknown. Fortunately, dividing cells induce temporal correlations in their progeny, which allow for retrospective inference of the decision time point. We present a computational method to infer decision time points from correlated marker signals in genealogies and apply it to differentiating hematopoietic stem cells. We find that myeloid lineage decisions happen generations before lineage marker onsets. Inferred decision time points are in agreement with data from colony assay experiments. The levels of the myeloid transcription factor PU.1 do not change during, but long after the predicted lineage decision event, indicating that the PU.1/GATA1 toggle switch paradigm cannot explain the initiation of early myeloid lineage choice

    CSF-1-induced Src signaling can instruct monocytic lineage choice.

    No full text
    Controlled regulation of lineage decisions is imperative for hematopoiesis. Yet, the molecular mechanisms underlying hematopoietic lineage choices are poorly defined. CSF-1, the cytokine acting as the principal regulator of monocyte/macrophage development, has been shown to be able to instruct the lineage choice of uncommitted granulocyte macrophage progenitors towards a monocyte/macrophage fate. However, the intracellular signaling pathways involved are unknown. CSF-1 activates a multitude of signaling pathways resulting in a pleiotropic cellular response. The precise role of individual pathways within this complex and redundant signaling network is dependent on cellular context and not well understood. Here, we addressed which CSF-1-activated pathways are involved in transmitting the lineage-instructive signal in primary bone marrow-derived granulocyte macrophage progenitors. While its loss is compensated for by alternative signaling activation mechanisms, Src family kinase signaling is sufficient to transmit the CSF-1 lineage instructive signal. Moreover, c-Src activity is sufficient to drive macrophage fate, even in non-myeloid cells

    Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells.

    No full text
    Haematopoietic stem cells self-renew and differentiate into all blood lineages throughout life, and can repair damaged blood systems upon transplantation. Asymmetric cell division has previously been suspected to be a regulator of haematopoietic-stem-cell fate, but its existence has not directly been shown(1). In asymmetric cell division, asymmetric fates of future daughter cells are prospectively determined by a mechanism that is linked to mitosis. This can be mediated by asymmetric inheritance of cell-extrinsic niche signals by, for example, orienting the divisional plane, or by the asymmetric inheritance of cell-intrinsic fate determinants. Observations of asymmetric inheritance or of asymmetric daughter-cell fates alone are not sufficient to demonstrate asymmetric cell division(2). In both cases, sister-cell fates could be controlled by mechanisms that are independent of division. Here we demonstrate that the cellular degradative machinery-including lysosomes, autophagosomes, mitophagosomes and the protein NUMB-can be asymmetrically inherited into haematopoietic-stem-cell daughter cells. This asymmetric inheritance predicts the asymmetric future metabolic and translational activation and fates of haematopoietic-stem-cell daughter cells and their offspring. Therefore, our studies provide evidence for the existence of asymmetric cell division in haematopoietic stem cells

    Erratum: Publisher Correction: Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells (Nature (2019) 573 7774 (426-429)).

    No full text
    An Amendment to this paper has been published and can be accessed via a link at the top of the paper

    Identification of factors promoting <em>ex vivo</em> maintenance of mouse hematopoietic stem cells by long-term single-cell quantification.

    No full text
    The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Co-culture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or non-supportive stroma co-cultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knock-down in supportive stroma impaired HSC survival, while ectopic expression of the Dpt gene or protein in non-supportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo

    Network plasticity of pluripotency transcription factors in embryonic stem cells.

    No full text
    Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present
    corecore