11,762 research outputs found
Design and implementation of an electro-optical backplane with pluggable in-plane connectors
The design, implementation and characterisation of an electro-optical
backplane and an active pluggable in-plane optical connector technology
is presented. The connection architecture adopted allows line cards to
be mated to and unmated from a passive electro-optical backplane with
embedded polymeric waveguides. The active connectors incorporate a
photonics interface operating at 850 nm and a mechanism to passively
align the interface to the optical waveguides embedded in the backplane.
A demonstration platform has been constructed to assess the viability of
embedded electro-optical backplane technology in dense data storage
systems. The demonstration platform includes four switch cards, which
connect both optically and electronically to the electro-optical backplane
in a chassis. These switch cards are controlled by a single board
computer across a Compact PCI bus on the backplane. The electrooptical
backplane is comprised of copper layers for power and low speed
bus communication and one polymeric optical layer, wherein waveguides
have been patterned by a direct laser writing scheme. The optical
waveguide design includes densely arrayed multimode waveguides with
a centre to centre pitch of 250μm between adjacent channels, multiple
cascaded waveguide bends, non-orthogonal crossovers and in-plane
connector interfaces. In addition, a novel passive alignment method
has been employed to simplify high precision assembly of the optical
receptacles on the backplane. The in-plane connector interface is based
on a two lens free space coupling solution, which reduces susceptibility
to contamination. Successful transfer of 10.3 Gb/s data along multiple
waveguides in the electro-optical backplane has been demonstrated and
characterised
Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission
We present the implementation and the first results of cosmic ray (CR)
feedback in the Feedback In Realistic Environments (FIRE) simulations. We
investigate CR feedback in non-cosmological simulations of dwarf, sub-
starburst, and galaxies with different propagation models, including
advection, isotropic and anisotropic diffusion, and streaming along field lines
with different transport coefficients. We simulate CR diffusion and streaming
simultaneously in galaxies with high resolution, using a two moment method. We
forward-model and compare to observations of -ray emission from nearby
and starburst galaxies. We reproduce the -ray observations of dwarf and
galaxies with constant isotropic diffusion coefficient . Advection-only and streaming-only
models produce order-of-magnitude too large -ray luminosities in dwarf
and galaxies. We show that in models that match the -ray
observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before
significant collisional losses, while starburst galaxies are CR proton
calorimeters. While adiabatic losses can be significant, they occur only after
CRs escape galaxies, so they are only of secondary importance for -ray
emissivities. Models where CRs are ``trapped'' in the star-forming disk have
lower star formation efficiency, but these models are ruled out by -ray
observations. For models with constant that match the -ray
observations, CRs form extended halos with scale heights of several kpc to
several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA
The origin of ultra diffuse galaxies: stellar feedback and quenching
We test if the cosmological zoom-in simulations of isolated galaxies from the
FIRE project reproduce the properties of ultra diffuse galaxies. We show that
stellar feedback-generated outflows that dynamically heat galactic stars,
together with a passively aging stellar population after imposed quenching
(from e.g. infall into a galaxy cluster), naturally reproduce the observed
population of red UDGs, without the need for high spin halos or dynamical
influence from their host cluster. We reproduce the range of surface
brightness, radius and absolute magnitude of the observed z=0 red UDGs by
quenching simulated galaxies at a range of different times. They represent a
mostly uniform population of dark matter-dominated galaxies with M_star ~1e8
Msun, low metallicity and a broad range of ages. The most massive simulated
UDGs require earliest quenching and are therefore the oldest. Our simulations
provide a good match to the central enclosed masses and the velocity
dispersions of the observed UDGs (20-50 km/s). The enclosed masses of the
simulated UDGs remain largely fixed across a broad range of quenching times
because the central regions of their dark matter halos complete their growth
early. A typical UDG forms in a dwarf halo mass range of Mh~4e10-1e11 Msun. The
most massive red UDG in our sample requires quenching at z~3 when its halo
reached Mh ~ 1e11 Msun. If it, instead, continues growing in the field, by z=0
its halo mass reaches > 5e11 Msun, comparable to the halo of an L* galaxy. If
our simulated dwarfs are not quenched, they evolve into bluer low-surface
brightness galaxies with mass-to-light ratios similar to observed field dwarfs.
While our simulation sample covers a limited range of formation histories and
halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy
type around Ms~1e8 Msun, both in the field and in clusters.Comment: 20 pages, 13 figures; match the MNRAS accepted versio
Breathing FIRE: How Stellar Feedback Drives Radial Migration, Rapid Size Fluctuations, and Population Gradients in Low-Mass Galaxies
We examine the effects of stellar feedback and bursty star formation on
low-mass galaxies ()
using the FIRE (Feedback in Realistic Environments) simulations. While previous
studies emphasized the impact of feedback on dark matter profiles, we
investigate the impact on the stellar component: kinematics, radial migration,
size evolution, and population gradients. Feedback-driven outflows/inflows
drive significant radial stellar migration over both short and long timescales
via two processes: (1) outflowing/infalling gas can remain star-forming,
producing young stars that migrate within their first , and (2) gas outflows/inflows drive strong fluctuations in the
global potential, transferring energy to all stars. These processes produce
several dramatic effects. First, galaxies' effective radii can fluctuate by
factors of over , and these rapid size fluctuations
can account for much of the observed scatter in radius at fixed
Second, the cumulative effects of many outflow/infall episodes steadily heat
stellar orbits, causing old stars to migrate outward most strongly. This
age-dependent radial migration mixes---and even inverts---intrinsic age and
metallicity gradients. Thus, the galactic-archaeology approach of calculating
radial star-formation histories from stellar populations at can be
severely biased. These effects are strongest at , the same regime where feedback most
efficiently cores galaxies. Thus, detailed measurements of stellar kinematics
in low-mass galaxies can strongly constrain feedback models and test baryonic
solutions to small-scale problems in CDM.Comment: Accepted to ApJ (820, 131) with minor revisions from v1. Figure 4 now
includes dark matter. Main results in Figures 7 and 1
Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs
Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene
On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium
We quantify the gas-phase abundance of deuterium and fractional contribution
of stellar mass loss to the gas in cosmological zoom-in simulations from the
Feedback In Realistic Environments project. At low metallicity, our simulations
confirm that the deuterium abundance is very close to the primordial value. The
chemical evolution of the deuterium abundance that we derive here agrees
quantitatively with analytical chemical evolution models. We furthermore find
that the relation between the deuterium and oxygen abundance exhibits very
little scatter. We compare our simulations to existing high-redshift
observations in order to determine a primordial deuterium fraction of 2.549 +/-
0.033 x 10^-5 and stress that future observations at higher metallicity can
also be used to constrain this value. At fixed metallicity, the deuterium
fraction decreases slightly with decreasing redshift, due to the increased
importance of mass loss from intermediate-mass stars. We find that the
evolution of the average deuterium fraction in a galaxy correlates with its
star formation history. Our simulations are consistent with observations of the
Milky Way's interstellar medium: the deuterium fraction at the solar circle is
85-92 per cent of the primordial deuterium fraction. We use our simulations to
make predictions for future observations. In particular, the deuterium
abundance is lower at smaller galactocentric radii and in higher mass galaxies,
showing that stellar mass loss is more important for fuelling star formation in
these regimes (and can even dominate). Gas accreting onto galaxies has a
deuterium fraction above that of the galaxies' interstellar medium, but below
the primordial fraction, because it is a mix of gas accreting from the
intergalactic medium and gas previously ejected or stripped from galaxies.Comment: Accepted for publication in MNRAS. Revised version: expanded
discussion and added Figure 2 (residual dependence on iron abundance
Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes
We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity κ∼3×10²⁹ cm² s⁻¹ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ∼10⁴), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O VI columns ≳10^(14.5) cm⁻² at distances ≳150kpc. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot (T≳10⁵) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase
But What About... Cosmic Rays, Magnetic Fields, Conduction, & Viscosity in Galaxy Formation
We present a suite of high-resolution cosmological simulations, using the
FIRE-2 feedback physics together with explicit treatment of magnetic fields,
anisotropic conduction and viscosity, and cosmic rays (CRs) injected by
supernovae (including anisotropic diffusion, streaming, adiabatic, hadronic and
Coulomb losses). We survey systems from ultra-faint dwarf (, ) through Milky Way
masses, systematically vary CR parameters (e.g. the diffusion coefficient
and streaming velocity), and study an ensemble of galaxy properties
(masses, star formation histories, mass profiles, phase structure,
morphologies). We confirm previous conclusions that magnetic fields,
conduction, and viscosity on resolved (pc) scales have small
effects on bulk galaxy properties. CRs have relatively weak effects on all
galaxy properties studied in dwarfs (, ), or at high redshifts (), for
any physically-reasonable parameters. However at higher masses () and , CRs can suppress star
formation by factors , given relatively high effective diffusion
coefficients . At lower
, CRs take too long to escape dense star-forming gas and lose energy to
hadronic collisions, producing negligible effects on galaxies and violating
empirical constraints from -ray emission. But around , CRs escape the galaxy and build up a
CR-pressure-dominated halo which supports dense, cool ( K) gas
that would otherwise rain onto the galaxy. CR heating (from collisional and
streaming losses) is never dominant.Comment: 35 pages, 23 figures. Updated to match published (MNRAS) versio
Exploring the interdependencies of research funders in the UK
Investment in medical research is vital to the continuing improvement of the UK's health and wealth. It is through research that we expand our understanding of disease and develop new treatments for patients. Medical research charities currently contribute over £1 billion annually to medical research in the UK, of which over £350 million is provided by Cancer Research UK. Many charities,
including Cancer Research UK, receive no government funding for their research
activity.
Cancer Research UK is engaged in a programme of work in order to better understand the medical research funding environment and demonstrate the importance of sustained investment. A key part of that is the Office of Health
Economics‟ (OHE) 2011 report “Exploring the interdependency between public and charitable medical research”. This study found that there are substantial
benefits, both financial and qualitative, from the existence of a variety of funders and that reductions in the level of government financial support for medical
research are likely to have broader negative effects.
This contributed to other evidence which found that the activities and funding of the charity, public and private sectors respectively are complementary, i.e. mutually reinforcing, rather than duplicative or merely substituting for one another.
“Exploring the interdependencies of research funders in the UK” by the Office of Health Economics (OHE) and SPRU: Science and Technology Policy Research at the University of Sussex, represents a continued effort to build the evidence base around the funding of medical research.
This report uncovers the extent to which funders of cancer research are interdependent, nationally and internationally. Key figures show that two
thirds of publications acknowledging external support have relied on multiple funders, while just under half benefited from overseas funding, and almost a fifth are also supported by industry. In addition the analysis
shows that the general public would not want tax funding of cancer research to be reduced, but would not donate enough to charities to compensate for any such reduction
- …